论文标题

地面毫米天文学的结构大气噪声的时间域深度学习过滤

Time-domain deep learning filtering of structured atmospheric noise for ground-based millimeter astronomy

论文作者

Rocha-Solache, Alejandra, Rodríguez-Montoya, Iván, Sánchez-Argüelles, David, Aretxaga, Itziar

论文摘要

大气湍流中涉及的复杂物理学使地面天文学很难构建准确的闪烁模型并开发有效的方法,从而从有价值的天文观测中消除了这种高度结构化的噪声。我们认为,深度学习方法可以为解决这个问题带来重大进展,因为深度神经网络在广泛的范围内固有的固有能力来抽象非线性模式。我们提出了一个由长期术语记忆单元组成的结构,以及受到转移和课程学习启发的增量训练策略。我们开发了一个闪烁模型,并采用经验方法来生成大气噪声实现的广泛目录,并使用代表性数据训练网络。我们面对两个复杂性轴:信噪比(SNR)和噪声中的结构程度。因此,我们训练我们的经常性网络以识别嵌入三个结构化噪声水平的模拟天体物理点状源,其RAW-DATA SNR范围为3至0.1。我们发现,在训练过程中,复杂性的缓慢和重复性提高至关重要,以获得稳健而稳定的学习率,可以通过不同的数据上下文传输信息。我们使用合成观察数据进行探测复发模型,并与通量测量的校准方法一起设计。此外,我们实施了传统的匹配过滤(MF),以将其性能与我们的神经网络进行比较,发现我们最终训练的网络可以成功地清洁结构性噪声,并以与原始数据相比,比传统MF更强大地增强了SNR。

The complex physics involved in atmospheric turbulence makes it very difficult for ground-based astronomy to build accurate scintillation models and develop efficient methodologies to remove this highly structured noise from valuable astronomical observations. We argue that a Deep Learning approach can bring a significant advance to treat this problem because of deep neural networks' inherent ability to abstract non-linear patterns over a broad scale range. We propose an architecture composed of long-short term memory cells and an incremental training strategy inspired by transfer and curriculum learning. We develop a scintillation model and employ an empirical method to generate a vast catalog of atmospheric noise realizations and train the network with representative data. We face two complexity axes: the signal-to-noise ratio (SNR) and the degree of structure in the noise. Hence, we train our recurrent network to recognize simulated astrophysical point-like sources embedded in three structured noise levels, with a raw-data SNR ranging from 3 to 0.1. We find that a slow and repetitive increase in complexity is crucial during training to obtain a robust and stable learning rate that can transfer information through different data contexts. We probe our recurrent model with synthetic observational data, designing alongside a calibration methodology for flux measurements. Furthermore, we implement a traditional matched filtering (MF) to compare its performance with our neural network, finding that our final trained network can successfully clean structured noise and significantly enhance the SNR compared to raw data and in a more robust way than traditional MF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源