论文标题
bda-sketret:零射击SBIR的双层域适应
BDA-SketRet: Bi-Level Domain Adaptation for Zero-Shot SBIR
论文作者
论文摘要
基于零素描的图像检索(ZS-SBIR)模型的功效受两个挑战的控制。草图和图像之间的巨大分布间隙需要适当的域对齐。此外,任务的细颗粒性质和许多类别的高层内差异需要在草图,图像和语义空间之间进行课堂判别映射。在此前提下,我们提出了BDA-Sketret,这是一种新型的ZS-SBIR框架,执行了双层域的适应性,以逐渐使视觉数据对的空间和语义特征对齐。为了突出共享特征并减少任何草图或特定图像特异性工件的效果,我们根据信息瓶颈的概念提出了一种新颖的对称损失函数,以使语义特征对齐,同时引入了基于跨透明的对抗性损失,以使空间表现图对齐。最后,我们的基于CNN的模型通过新型拓扑拓扑的语义投影网络证实了共享潜在空间的歧视性。扩展的粗略,Tu-Berlin和QuickDraw数据集的实验结果对文献表现出敏锐的改进。
The efficacy of zero-shot sketch-based image retrieval (ZS-SBIR) models is governed by two challenges. The immense distributions-gap between the sketches and the images requires a proper domain alignment. Moreover, the fine-grained nature of the task and the high intra-class variance of many categories necessitates a class-wise discriminative mapping among the sketch, image, and the semantic spaces. Under this premise, we propose BDA-SketRet, a novel ZS-SBIR framework performing a bi-level domain adaptation for aligning the spatial and semantic features of the visual data pairs progressively. In order to highlight the shared features and reduce the effects of any sketch or image-specific artifacts, we propose a novel symmetric loss function based on the notion of information bottleneck for aligning the semantic features while a cross-entropy-based adversarial loss is introduced to align the spatial feature maps. Finally, our CNN-based model confirms the discriminativeness of the shared latent space through a novel topology-preserving semantic projection network. Experimental results on the extended Sketchy, TU-Berlin, and QuickDraw datasets exhibit sharp improvements over the literature.