论文标题
Qugit:高斯量子状态的数值工具箱
QuGIT: a numerical toolbox for Gaussian quantum states
论文作者
论文摘要
在经典计算机上模拟量子状态很难,通常需要在内存和计算能力方面进行过多的资源。但是,对于某些类别的量子状态,尤其是连续可变系统的所谓高斯量子状态,可以实现有效的仿真。在这项工作中,我们介绍了QUGIT - 一种基于互合式方法的Python数值工具箱,专门用于有效模拟多模高斯状态和操作。 Qugit是准确的,不需要希尔伯特空间的截断,并且在任意高斯州(包括一级人员,部分痕迹,张量,张量,通用 - dyne测量,条件和无条件动力学)上提供了广泛的高斯操作。为了说明工具箱,描述了与量子光学和光学机械相关的几个用法示例。
Simulating quantum states on a classical computer is hard, typically requiring prohibitive resources in terms of memory and computational power. Efficient simulation, however, can be achieved for certain classes of quantum states, in particular the so-called Gaussian quantum states of continuous variable systems. In this work we introduce QuGIT - a python numerical toolbox based on symplectic methods specialized in efficiently simulating multimode Gaussian states and operations. QuGIT is exact, requiring no truncation of Hilbert space, and provides a wide range of Gaussian operations on arbitrary Gaussian states, including unitaries, partial traces, tensor products, general-dyne measurements, conditional and unconditional dynamics. To illustrate the toolbox, several examples of usage relevant to quantum optics and optomechanics are described.