论文标题
使用陀螺仪模拟解释径向相关多普勒反射仪
Interpreting Radial Correlation Doppler Reflectometry using Gyrokinetic Simulations
论文作者
论文摘要
应用于旋转仿真的DBS振幅的线性响应,局部模型表明,径向相关多普勒反映测量值(RCDR,Schirmer等人,血浆物理学对照。融合49 1019(2007))对选择的平均辐射相关长度不敏感,但依赖于$ k _的相关长度,$ k _ k _ k _由多普勒反向散射(DBS)信号。 Nonlinear gyrokinetic simulations show that the turbulence naturally exhibits a non-separable power law spectrum in wavenumber space, leading to a power law dependence of the radial correlation length with binormal wavenumber $l_r \sim C k_\perp^{-α} (α\approx 1)$ which agrees with the inverse proportionality relationship between the measured $l_r$ and实验中的$ k_ \ perp $(Fernandez-Marina等,Nucl。Fusion54 072001(2014))。这提供了表征垂直平面上与磁场的涡流纵横比的可能性,并激发了未来对不可分割的湍流光谱的使用来定量解释RCDR以及潜在的其他湍流诊断。仅当截止位置的径向分辨率$ w_n $满足$ W_N \ ll l_r $时,径向相关长度才能测量,而测量由$ w_n $ for $ w_n \ gg l_r $主导。这表明$ l_r $对于电子规模的DBS测量可能无法访问($ k_ \perpρ_s> 1 $)。 $ w_n $对离子级径向相关长度的影响可能不可忽略。
A linear response, local model for the DBS amplitude applied to gyrokinetic simulations shows that radial correlation Doppler reflectometry measurements (RCDR, Schirmer et al., Plasma Phys. Control. Fusion 49 1019 (2007)) are not sensitive to the average turbulence radial correlation length, but to a correlation length that depends on the binormal wavenumber $k_\perp$ selected by the Doppler backscattering (DBS) signal. Nonlinear gyrokinetic simulations show that the turbulence naturally exhibits a non-separable power law spectrum in wavenumber space, leading to a power law dependence of the radial correlation length with binormal wavenumber $l_r \sim C k_\perp^{-α} (α\approx 1)$ which agrees with the inverse proportionality relationship between the measured $l_r$ and $k_\perp $ in experiments (Fernandez-Marina et al., Nucl. Fusion 54 072001 (2014)). This offers the possibility of characterizing the eddy aspect ratio in the perpendicular plane to the magnetic field and motivates future use of a non-separable turbulent spectrum to quantitatively interpret RCDR and potentially other turbulence diagnostics. The radial correlation length is only measurable when the radial resolution at the cutoff location $W_n$ satisfies $W_n \ll l_r$, while the measurement becomes dominated by $W_n$ for $W_n \gg l_r$. This suggests that $l_r$ is likely inaccessible for electron-scale DBS measurements ($k_\perpρ_s > 1$). The effect of $W_n$ on ion-scale radial correlation lengths could be non-negligible.