论文标题

在低prandtl数字上进行热湍流建模的物理受限的机器学习

Physics-constrained machine learning for thermal turbulence modelling at low Prandtl numbers

论文作者

Fiore, Matilde, Koloszar, Lilla, Mendez, Miguel Alfonso, Duponcheel, Matthieu, Bartosiewicz, Yann

论文摘要

液体金属在新一代液体金属冷却核反应堆中起着核心作用,为此,数值研究需要使用适当的热湍流模型来用于低prandtl数量流体。鉴于传统建模方法的局限性以及此类流体的高保真数据的可用性增加,我们提出了一种机器学习策略,用于建模湍流通量。得出了全面的代数数学结构,并实施了物理约束,以确保有吸引力的特性促进适用性,鲁棒性和稳定性。模型的闭合系数由人工神经网络(ANN)预测,该神经网络(ANN)在不同的prandtl数字上接受了DNS数据训练。通过先验和三维液体金属流的先验和后验验证,该方法的有效性得到了验证。该模型提供了湍流通量的完整矢量表示,并且预测符合DNS数据的范围很广(PR = 0.01-0.71)。与其他现有热模型的比较表明,该方法非常有前途。

Liquid metals play a central role in new generation liquid metal cooled nuclear reactors, for which numerical investigations require the use of appropriate thermal turbulence models for low Prandtl number fluids. Given the limitations of traditional modelling approaches and the increasing availability of high-fidelity data for this class of fluids, we propose a Machine Learning strategy for the modelling of the turbulent heat flux. A comprehensive algebraic mathematical structure is derived and physical constraints are imposed to ensure attractive properties promoting applicability, robustness and stability. The closure coefficients of the model are predicted by an Artificial Neural Network (ANN) which is trained with DNS data at different Prandtl numbers. The validity of the approach was verified through a priori and a posteriori validation for two and three-dimensional liquid metal flows. The model provides a complete vectorial representation of the turbulent heat flux and the predictions fit the DNS data in a wide range of Prandtl numbers (Pr=0.01-0.71). The comparison with other existing thermal models shows that the methodology is very promising.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源