论文标题

解决雷蒙德的猜想的新方法

A new way to tackle a conjecture of Rémond

论文作者

Plessis, Arnaud

论文摘要

令$γ\ subset \ bar {\ mathbb {q}}}^*$为有限生成的子组。用$γ_\ mathrm {div} $表示其分区组。与Zilber-Pink猜想有关的最新猜想预测,$ \ Mathbb {Q}元素的绝对对数高度的高度(γ__\ Mathrm {div})^*\ Backslashγ_{\ Mathrm {\ Mathrm {div}} $ pottort positive n positive n positive。在本文中,我们提出了一种解决这个问题的新方法。

Let $Γ\subset \bar{\mathbb{Q}}^*$ be a finitely generated subgroup. Denote by $Γ_\mathrm{div}$ its division group. A recent conjecture due to Rémond, related to the Zilber-Pink conjecture, predicts that the absolute logarithmic Weil height of an element of $\mathbb{Q}(Γ_\mathrm{div})^*\backslash Γ_{\mathrm{div}}$ is bounded from below by a positive constant depending only on $Γ$. In this paper, we propose a new way to tackle this problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源