论文标题

使用CMOS图像传感器具有随机光子捕获纳米结构的基于重建的光谱,每个传感器

Reconstruction-based spectroscopy using CMOS image sensors with random photon-trapping nanostructure per sensor

论文作者

Ahamed, Ahasan, Bartolo-Perez, Cesar, Mayet, Ahmed Sulaiman, Ghandiparsi, Soroush, McPhillips, Lisa, Wang, Shih-Yuan, Islam, M. Saif

论文摘要

光谱仪是广泛使用的科学设备,其应用许多应用,涉及材料表征,化学分析,疾病诊断,监视等。生物医学和通信领域的新兴应用促进了光谱仪微型化的研究。最近,基于重建的光谱仪因其紧凑的尺寸,简单的可操作性和多功能实用程序而受欢迎。这些设备利用了最近计算机的出色计算能力,使用对不同波长的响应性不同的检测器重建高光谱图像。在本文中,我们提出了一个基于CMOS兼容重建的片上光谱仪像素,能够以1 nm的光谱分辨率来频谱解析可见光谱,以保持高精度(> 95%)和低足迹(8 UM x 8 UM),而无需使用任何其他过滤器。单光谱仪像素是由一系列硅光二极管形成的,每个硅光二极管由于其集成的纳米结构而具有独特的吸收光谱,这使我们能够计算重建超光谱图像。为了达到明显的响应性,我们使用不同的尺寸和形状来利用每个光电二极管的随机光子捕获纳米结构,这些尺寸和形状会修改不同波长下光的耦合。这还减少了光谱仪像素足迹(与常规摄像头像素相当),从而改善了空间分辨率。此外,深沟隔离(DTI)减少了相邻光二极管之间的串扰。该微型光谱仪可用于实时的原位生物医学应用,例如荧光寿命成像显微镜(FLIM),脉搏血氧仪,疾病诊断和手术指导。

Optical spectrometers are widely used scientific equipment with many applications involving material characterization, chemical analysis, disease diagnostics, surveillance, etc. Emerging applications in biomedical and communication fields have boosted the research in the miniaturization of spectrometers. Recently, reconstruction-based spectrometers have gained popularity for their compact size, easy maneuverability, and versatile utilities. These devices exploit the superior computational capabilities of recent computers to reconstruct hyperspectral images using detectors with distinct responsivity to different wavelengths. In this paper, we propose a CMOS compatible reconstruction-based on-chip spectrometer pixels capable of spectrally resolving the visible spectrum with 1 nm spectral resolution maintaining high accuracy (>95 %) and low footprint (8 um x 8 um), all without the use of any additional filters. A single spectrometer pixel is formed by an array of silicon photodiodes, each having a distinct absorption spectrum due to their integrated nanostructures, this allows us to computationally reconstruct the hyperspectral image. To achieve distinct responsivity, we utilize random photon-trapping nanostructures per photodiode with different dimensions and shapes that modify the coupling of light at different wavelengths. This also reduces the spectrometer pixel footprint (comparable to conventional camera pixels), thus improving spatial resolution. Moreover, deep trench isolation (DTI) reduces the crosstalk between adjacent photodiodes. This miniaturized spectrometer can be utilized for real-time in-situ biomedical applications such as Fluorescence Lifetime Imaging Microscopy (FLIM), pulse oximetry, disease diagnostics, and surgical guidance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源