论文标题

用边缘依赖的顶点重量切割超图形

Hypergraph Cuts with Edge-Dependent Vertex Weights

论文作者

Zhu, Yu, Segarra, Santiago

论文摘要

我们开发了一个将依赖边缘的顶点权重(EDVW)纳入HyperGraph最小S-T切割问题中的框架。这些权重能够反映出超边缘内顶点的不同重要性,从而导致了更好的剪切特性。更确切地说,我们引入了我们称为基于EDVWS的新型HyperEdge拆分函数,其中拆分HyperEdge的惩罚仅取决于与拆分两侧相关的EDVWS的总和。此外,我们提供了一种构建基于EDVWS的分裂功能的方法,并证明配备了这种分裂功能的超图可以减少到共享相同剪切属性的图。在这种情况下,可以使用良好发达的解决方案解决最小S-T切割问题的HyperGraph最小S-T切割问题。此外,我们表明现有的稀疏技术可以很容易地扩展到我们的情况下,并使还原的图形较小且稀疏,从而进一步加速了应用于还原图的算法。使用现实世界数据的数值实验与现有工作中通常采用的全部或全部基于基于基础的分裂功能相比,我们提出的基于EDVWS的分裂功能的有效性。

We develop a framework for incorporating edge-dependent vertex weights (EDVWs) into the hypergraph minimum s-t cut problem. These weights are able to reflect different importance of vertices within a hyperedge, thus leading to better characterized cut properties. More precisely, we introduce a new class of hyperedge splitting functions that we call EDVWs-based, where the penalty of splitting a hyperedge depends only on the sum of EDVWs associated with the vertices on each side of the split. Moreover, we provide a way to construct submodular EDVWs-based splitting functions and prove that a hypergraph equipped with such splitting functions can be reduced to a graph sharing the same cut properties. In this case, the hypergraph minimum s-t cut problem can be solved using well-developed solutions to the graph minimum s-t cut problem. In addition, we show that an existing sparsification technique can be easily extended to our case and makes the reduced graph smaller and sparser, thus further accelerating the algorithms applied to the reduced graph. Numerical experiments using real-world data demonstrate the effectiveness of our proposed EDVWs-based splitting functions in comparison with the all-or-nothing splitting function and cardinality-based splitting functions commonly adopted in existing work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源