论文标题
在网络尺度上选择原位回答句子
In Situ Answer Sentence Selection at Web-scale
论文作者
论文摘要
在开放域问题答案(ODQA)中应用的当前答案句子选择(AS2)通过对从检索到的文本中提取的大量可能的候选者(即句子)进行排名,从而选择答案。在本文中,我们介绍了基于段落的提取答案句子(PEASI),这是针对Web尺度设置优化的AS2的新型设计,相反,它可以计算出此类答案而无需单独处理每个候选人。具体来说,我们设计了一个基于变压器的框架,该框架共同(i)重读了一个问题,并(ii)从最高段落中识别出可能的答案。我们在一个多任务学习框架中训练Peasi,该框架鼓励组件之间的功能共享:通过Reranker和基于通道的答案句子提取器。为了促进我们的开发,我们构建了一个新的网络节目大规模质量保证数据集,该数据集由800,000多个标记的段落/句子组成,用于60,000多个问题。实验表明,我们提出的设计有效地优于AS2的当前最新设置,即独立对句子进行排名的点模型,准确性从48.86%到55.37%。此外,PEASI在计算答案句子方面非常有效,与标准设置相比,仅需要约20%的推论,即重新掌握所有可能的候选者。我们认为,数据集和我们提出的设计都可以发行Peasi,可以为在Web级上部署问答服务时的研究和开发做出贡献。
Current answer sentence selection (AS2) applied in open-domain question answering (ODQA) selects answers by ranking a large set of possible candidates, i.e., sentences, extracted from the retrieved text. In this paper, we present Passage-based Extracting Answer Sentence In-place (PEASI), a novel design for AS2 optimized for Web-scale setting, that, instead, computes such answer without processing each candidate individually. Specifically, we design a Transformer-based framework that jointly (i) reranks passages retrieved for a question and (ii) identifies a probable answer from the top passages in place. We train PEASI in a multi-task learning framework that encourages feature sharing between the components: passage reranker and passage-based answer sentence extractor. To facilitate our development, we construct a new Web-sourced large-scale QA dataset consisting of 800,000+ labeled passages/sentences for 60,000+ questions. The experiments show that our proposed design effectively outperforms the current state-of-the-art setting for AS2, i.e., a point-wise model for ranking sentences independently, by 6.51% in accuracy, from 48.86% to 55.37%. In addition, PEASI is exceptionally efficient in computing answer sentences, requiring only ~20% inferences compared to the standard setting, i.e., reranking all possible candidates. We believe the release of PEASI, both the dataset and our proposed design, can contribute to advancing the research and development in deploying question answering services at Web scale.