论文标题
61 Quit可编程超导处理器上量子多体状态的量子神经元感测
Quantum Neuronal Sensing of Quantum Many-Body States on a 61-Qubit Programmable Superconducting Processor
论文作者
论文摘要
对具有不同特性和物质阶段的多体量子状态进行分类是量子多体物理学中最基本的任务之一。但是,由于从大量相互作用的粒子中出现的指数复杂性,对大规模的量子状态进行分类一直极具挑战性的经典方法。在这里,我们提出了一种称为量子神经元传感的新方法。利用61个Qubit超导量子处理器,我们表明我们的方案可以有效地对两种不同类型的多体现象进行分类:即物质的千古和局部阶段。我们的量子神经元感应过程使我们能够从特征光谱的统计特征提取必要的信息,以通过仅测量一个量子来区分物质的这些阶段。我们的工作证明了近期量子处理器的量子神经元传感的可行性和可伸缩性,并为探索大型系统中量子多体现象的新途径开辟了新的途径。
Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale quantum states has been extremely challenging for classical approaches. Here, we propose a new approach called quantum neuronal sensing. Utilizing a 61 qubit superconducting quantum processor, we show that our scheme can efficiently classify two different types of many-body phenomena: namely the ergodic and localized phases of matter. Our quantum neuronal sensing process allows us to extract the necessary information coming from the statistical characteristics of the eigenspectrum to distinguish these phases of matter by measuring only one qubit. Our work demonstrates the feasibility and scalability of quantum neuronal sensing for near-term quantum processors and opens new avenues for exploring quantum many-body phenomena in larger-scale systems.