论文标题

从政策到预测:预测在不完善的疫苗接种下的Covid-19动力学

From policy to prediction: Forecasting COVID-19 dynamics under imperfect vaccination

论文作者

Wang, Xiunan, Wang, Hao, Ramazi, Pouria, Nah, Kyeongah, Lewis, Mark

论文摘要

了解疫苗接种和非药物干预对COVID-19开发的共同影响对于制定控制大流行的公共卫生决策很重要。最近,我们通过组合了传染病的机械性差分方程(ODE)模型,用于预测传染病的每日数量,用于预测传染病的每日数量,以及用于预测公共卫生政策和移动性数据如何影响ODE模型中的传输率的通用增强机器学习模型(GBM)[WWR+]。在本文中,我们将方法扩展到了疫苗接种期,因此获得了COVID-19的每日确认案件的回顾性预测,并确定用作预测变量的策略的相对影响。特别是,我们的ODE模型既包含部分和完全疫苗接种的隔间,又包含突破性案例,即,接种疫苗的个体仍然可以被感染。我们的结果表明,包含有关非药物干预措施的数据可以显着提高预测的准确性。通过使用策略数据,该模型可以预测将来最多35天的每日感染病例数量,平均平均绝对百分比误差为34%,如果与人类流动性数据相结合,该案例的平均绝对百分比误差将进一步提高到21%。此外,与疫苗接种前的研究类似,最具影响力的预测变量仍然是对聚会的限制政策。这项工作中使用的建模方法可以帮助决策者设计控制措施,因为变异菌株将来威胁着公共卫生。

Understanding the joint impact of vaccination and non-pharmaceutical interventions on COVID-19 development is important for making public health decisions that control the pandemic. Recently, we created a method in forecasting the daily number of confirmed cases of infectious diseases by combining a mechanistic ordinary differential equation (ODE) model for infectious classes and a generalized boosting machine learning model (GBM) for predicting how public health policies and mobility data affect the transmission rate in the ODE model [WWR+]. In this paper, we extend the method to the post-vaccination period, accordingly obtain a retrospective forecast of COVID-19 daily confirmed cases in the US, and identify the relative influence of the policies used as the predictor variables. In particular, our ODE model contains both partially and fully vaccinated compartments and accounts for the breakthrough cases, that is, vaccinated individuals can still get infected. Our results indicate that the inclusion of data on non-pharmaceutical interventions can significantly improve the accuracy of the predictions. With the use of policy data, the model predicts the number of daily infected cases up to 35 days in the future, with an average mean absolute percentage error of 34%, which is further improved to 21% if combined with human mobility data. Moreover, similar to the pre-vaccination study, the most influential predictor variable remains the policy of restrictions on gatherings. The modeling approach used in this work can help policymakers design control measures as variant strains threaten public health in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源