论文标题
基于具有对数电势的复杂标量场的新徽标模型
A new logotropic model based on a complex scalar field with a logarithmic potential
论文作者
论文摘要
我们引入了一个基于复杂标量场的新逻辑模型,该模型具有对数电势,可以统一暗物质和暗能量。标量场满足非线性波方程在相对论方程式中概括了klein-gordon方程,而非派别主义制度中的schrödinger方程。该模型具有本质上的量子性质,并在经典限制$ \ hbar \ rightarrow 0 $中返回$λ$ CDM模型。它涉及物理的新基本常数$ a/c^2 = 2.10 \ times 10^{ - 26} \,{\ rm g} \,{\ rm m}^{ - 3} $负责宇宙的晚期加速扩展,并取代了Einstein Coomological Consological常数$λ$。逻辑模型几乎与$λ$ CDM模型在大(宇宙学)尺度上没有区别,但在小(银河系)尺度上解决了CDM危机。它还解决了模糊暗物质模型的问题。实际上,它导致带有通用表面密度$σ_0^{\ rm th} = 5.85 \,\ left({a}/{4πg} \ right)^{1/2} = 133 \,m _ {\ odot}/{\ rm rm rm rm pc}^2 $。该通用表面密度是从没有可调节参数的遗物模型中预测的,事实证明与观察到的值$σ_0^{\ rm obs} = 141 _ { - 52}^{+83} \,m _ {\ odot}/{\ odot}/{\ rm pc}/{\ rm pc}^2 $。我们还认为,数量$ω_ {\ rm dm,0} $和$ω_ {\ rm de,0} $,通常被解释为$ cdm模型中的深色物质和暗能量的当前比例,等于$ω_{\ rm dm dm dm dm dm,0}^\ rm th} = \ frac {1} {1+e}(1-ω_ {\ rm b,0})= 0.2559 $和$ω_ {\ rm de,0}^{\ rm th} = \ rm th} = \ frac {e}用测量值$ω_ {\ rm dm,0}^{\ rm obs} = 0.2589 $和$ω_ {\ rm de,0}^{\ rm obs} = 0.6911 $(它们的比率$ 2.669 $接近纯数字$ e = 2.71828 ... $ 2.71828 ... $ = 2.71828 ... $)。
We introduce a new logotropic model based on a complex scalar field with a logarithmic potential that unifies dark matter and dark energy. The scalar field satisfies a nonlinear wave equation generalizing the Klein-Gordon equation in the relativistic regime and the Schrödinger equation in the nonrelativistic regime. This model has an intrinsically quantum nature and returns the $Λ$CDM model in the classical limit $\hbar\rightarrow 0$. It involves a new fundamental constant of physics $A/c^2=2.10\times 10^{-26}\, {\rm g}\, {\rm m}^{-3}$ responsible for the late accelerating expansion of the Universe and superseding the Einstein cosmological constant $Λ$. The logotropic model is almost indistinguishable from the $Λ$CDM model at large (cosmological) scales but solves the CDM crisis at small (galactic) scales. It also solves the problems of the fuzzy dark matter model. Indeed, it leads to cored dark matter halos with a universal surface density $Σ_0^{\rm th}=5.85\,\left ({A}/{4πG}\right )^{1/2}=133\, M_{\odot}/{\rm pc}^2$. This universal surface density is predicted from the logotropic model without adjustable parameter and turns out to be close to the observed value $Σ_0^{\rm obs}=141_{-52}^{+83}\, M_{\odot}/{\rm pc}^2$. We also argue that the quantities $Ω_{\rm dm,0}$ and $Ω_{\rm de,0}$, which are usually interpreted as the present proportion of dark matter and dark energy in the $Λ$CDM model, are equal to $Ω_{\rm dm,0}^{\rm th}=\frac{1}{1+e}(1-Ω_{\rm b,0})=0.2559$ and $Ω_{\rm de,0}^{\rm th}=\frac{e}{1+e}(1-Ω_{\rm b,0})=0.6955$ in very good agreement with the measured values $Ω_{\rm dm,0}^{\rm obs}=0.2589$ and $Ω_{\rm de,0}^{\rm obs}=0.6911$ (their ratio $2.669$ is close to the pure number $e=2.71828...$).