论文标题

加速寻找新的铁电材料

Accelerated search for new ferroelectric materials

论文作者

Frey, Ramon, Grosso, Bastien F., Fandré, Pascal, Mächler, Benjamin, Spaldin, Nicola A., Tehrani, Aria Mansouri

论文摘要

我们报告了合并的机器学习和高通量密度功能理论(DFT)框架的开发,以加速寻找新的铁电材料。该框架可以仅使用元素组成作为输入来预测潜在的铁电化合物。一系列机器学习算法最初预测具有极地晶体结构的稳定和绝缘石化算法,具有极地晶体结构,在给定的化学组成空间内,是铁电性所必需的。然后,分类模型预测了这些石化的点组。随后的一系列高通量DFT计算发现了点组中最低的能量晶体结构。作为最后一步,使用组理论考虑确定了非极性父结构,并使用DFT计算自发极化的值。通过预测晶体结构和极化值,该方法提供了一种强大的工具,可以探索超出现有数据库中的铁电材料。

We report the development of a combined machine-learning and high-throughput density functional theory (DFT) framework to accelerate the search for new ferroelectric materials. The framework can predict potential ferroelectric compounds using only elemental composition as input. A series of machine-learning algorithms initially predict the possible stable and insulating stoichiometries with a polar crystal structure, necessary for ferroelectricity, within a given chemical composition space. A classification model then predicts the point groups of these stoichiometries. A subsequent series of high-throughput DFT calculations finds the lowest energy crystal structure within the point group. As a final step, non-polar parent structures are identified using group theory considerations, and the values of the spontaneous polarization are calculated using DFT. By predicting the crystal structures and the polarization values, this method provides a powerful tool to explore new ferroelectric materials beyond those in existing databases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源