论文标题

AWSNET:多序列心脏磁共振图像中心肌疤痕和水肿分割的自动加权监督注意力网络

AWSnet: An Auto-weighted Supervision Attention Network for Myocardial Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance Images

论文作者

Wang, Kai-Ni, Yang, Xin, Miao, Juzheng, Li, Lei, Yao, Jing, Zhou, Ping, Xue, Wufeng, Zhou, Guang-Quan, Zhuang, Xiahai, Ni, Dong

论文摘要

多序列心脏磁共振(CMR)提供了必要的病理信息(疤痕和水肿)来诊断心肌梗塞。但是,由于难以从多序列CMR数据中探索基础信息的困难,自动病理分割可能会具有挑战性。本文旨在通过新型的自动加权监督框架来解决多序列CMR的疤痕和水肿细分,在该框架下,使用强化学习在特定于任务的目标下探索了不同监督层之间的相互作用。此外,我们设计了一个粗到精细的框架,以使用形状的先验知识来增强小型心肌病理区域分割。粗分割模型将左心室心肌结构确定为先验的形状,而细分分段模型将像素的注意力策略与自动加权监督模型集成在一起,以从多序列CMR数据中学习和提取明显的病理结构。在组合多序列CMR(Myops 2020)的心肌病理学分割的公开数据集中的广泛实验结果表明,与其他最先进的方法相比,我们的方法可以实现有希望的性能。我们的方法有望在多序列CMR数据上推进心肌病理评估。为了激励社区,我们通过https://github.com/soleilssss/awsnet/tree/master公开提供了代码。

Multi-sequence cardiac magnetic resonance (CMR) provides essential pathology information (scar and edema) to diagnose myocardial infarction. However, automatic pathology segmentation can be challenging due to the difficulty of effectively exploring the underlying information from the multi-sequence CMR data. This paper aims to tackle the scar and edema segmentation from multi-sequence CMR with a novel auto-weighted supervision framework, where the interactions among different supervised layers are explored under a task-specific objective using reinforcement learning. Furthermore, we design a coarse-to-fine framework to boost the small myocardial pathology region segmentation with shape prior knowledge. The coarse segmentation model identifies the left ventricle myocardial structure as a shape prior, while the fine segmentation model integrates a pixel-wise attention strategy with an auto-weighted supervision model to learn and extract salient pathological structures from the multi-sequence CMR data. Extensive experimental results on a publicly available dataset from Myocardial pathology segmentation combining multi-sequence CMR (MyoPS 2020) demonstrate our method can achieve promising performance compared with other state-of-the-art methods. Our method is promising in advancing the myocardial pathology assessment on multi-sequence CMR data. To motivate the community, we have made our code publicly available via https://github.com/soleilssss/AWSnet/tree/master.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源