论文标题

歧管:通过歧管发现的直接空间分区

Manifoldron: Direct Space Partition via Manifold Discovery

论文作者

Wang, Dayang, Fan, Feng-Lei, Hou, Bo-Jian, Zhang, Hao, Jia, Zhen, Zhou, Boce, Lai, Rongjie, Yu, Hengyong, Wang, Fei

论文摘要

已经显示出具有广泛使用的Relu激活的神经网络将样品空间分配到许多凸多属的预测中。但是,参数化的方式是神经网络和其他机器学习模型来分区空间的缺陷,\ textit {e}。\ textit {g}。,对复杂模型的损害解释性,由于模型的一般特征而导致的决策边界构建中的僵化性,以及被捕获到快捷方式中的风险。相比之下,尽管非参数化模型可以可爱地避免或淡化这些问题,但由于过度简化或无法适应数据的流动结构,它们通常不够强大。在这种情况下,我们首先提出了一种新型的机器学习模型,称为歧管,该模型直接从数据和通过歧管结构发现划分空间的决策边界。然后,我们系统地分析了歧管的关键特征,例如歧管表征能力及其与神经网络的联系。在4个综合示例,20个公共基准数据集和1个现实世界应用程序上的实验结果表明,与主流机器学习模型相比,提议的歧管竞争性的表现性能。我们已在\ url {https://github.com/wdayang/manifoldron}中分享了我们的代码,以免费下载和评估。

A neural network with the widely-used ReLU activation has been shown to partition the sample space into many convex polytopes for prediction. However, the parameterized way a neural network and other machine learning models use to partition the space has imperfections, \textit{e}.\textit{g}., the compromised interpretability for complex models, the inflexibility in decision boundary construction due to the generic character of the model, and the risk of being trapped into shortcut solutions. In contrast, although the non-parameterized models can adorably avoid or downplay these issues, they are usually insufficiently powerful either due to over-simplification or the failure to accommodate the manifold structures of data. In this context, we first propose a new type of machine learning models referred to as Manifoldron that directly derives decision boundaries from data and partitions the space via manifold structure discovery. Then, we systematically analyze the key characteristics of the Manifoldron such as manifold characterization capability and its link to neural networks. The experimental results on 4 synthetic examples, 20 public benchmark datasets, and 1 real-world application demonstrate that the proposed Manifoldron performs competitively compared to the mainstream machine learning models. We have shared our code in \url{https://github.com/wdayang/Manifoldron} for free download and evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源