论文标题
与毫米波完全双工混合边界的集成感应和通信
Integrated Sensing and Communication with Millimeter Wave Full Duplex Hybrid Beamforming
论文作者
论文摘要
近年来,集成的传感和通信(ISAC)吸引了频谱效率提高的实质性吸引力,从而实现了硬件和光谱共享,以同时进行感应和信号操作。带有带内的双链体(FD)由于其同时传输和接收能力而被认为是ISAC应用的关键促进技术。在本文中,我们提出了一个基于FD的ISAC系统在毫米波(MMWave)频率下运行,其中使用混合模拟和数字(A/D)光束形成的大量多输入多输出(MIMO)基站(MIMO)基站(BS)节点正在与downlink(dl)多端antenna用户进行通信,并在同一范围内进行了bardive ins corevir contrar conceive in sy byain conters byain conter in sys byar ins sys berar contrar contrar contrar。我们开发了一种能够估计雷达靶标的到达方向(DOA),范围和相对速度的传感算法。提出了一个用于设计A/D传输和接收光束器的联合优化框架,以及自我干扰(SI)取消框架,其目的是最大化可实现的DL速率以及雷达目标感应性能的准确性。我们的仿真结果考虑了第五代(5G)正交频施加多路复用(OFDM)波形,请验证我们的方法在估计多个雷达目标的DOA,范围和速度方面的高度精度,同时最大化DL通信速率。
Integrated Sensing and Communication (ISAC) has attracted substantial attraction in recent years for spectral efficiency improvement, enabling hardware and spectrum sharing for simultaneous sensing and signaling operations. In-band Full Duplex (FD) is being considered as a key enabling technology for ISAC applications due to its simultaneous transmission and reception capability. In this paper, we present an FD-based ISAC system operating at millimeter Wave (mmWave) frequencies, where a massive Multiple-Input Multiple-Output (MIMO) Base Station (BS) node employing hybrid Analog and Digital (A/D) beamforming is communicating with a DownLink (DL) multi-antenna user and the same waveform is utilized at the BS receiver for sensing the radar targets in its coverage environment. We develop a sensing algorithm that is capable of estimating Direction of Arrival (DoA), range, and relative velocity of the radar targets. A joint optimization framework for designing the A/D transmit and receive beamformers as well as the Self-Interference (SI) cancellation is presented with the objective to maximize the achievable DL rate and the accuracy of the radar target sensing performance. Our simulation results, considering fifth Generation (5G) Orthogonal Frequency Division Multiplexing (OFDM) waveforms, verify our approach's high precision in estimating DoA, range, and velocity of multiple radar targets, while maximizing the DL communication rate.