论文标题
多任务纵向预测,对阿尔茨海默氏病缺失值
Multi-task longitudinal forecasting with missing values on Alzheimer's Disease
论文作者
论文摘要
机器学习技术通常适用于痴呆症预测缺乏共同学习多个任务,处理依赖时间的异质数据和缺失值的能力。在本文中,我们提出了一个使用最近呈现的SSHIBA模型的框架,以在缺少值的纵向数据上共同学习不同的任务。该方法使用贝叶斯变分推断来估算缺失值并结合几种视图的信息。这样,我们可以在共同的潜在空间中的不同时间点组合不同的数据视图,并在同时建模和预测几个输出变量的同时学习每个时间点之间的关系。我们应用此模型来预测痴呆症中诊断,心室体积和临床评分。结果表明,Sshiba能够学习缺失值的良好插补并超越基准,同时预测三个不同的任务。
Machine learning techniques typically applied to dementia forecasting lack in their capabilities to jointly learn several tasks, handle time dependent heterogeneous data and missing values. In this paper, we propose a framework using the recently presented SSHIBA model for jointly learning different tasks on longitudinal data with missing values. The method uses Bayesian variational inference to impute missing values and combine information of several views. This way, we can combine different data-views from different time-points in a common latent space and learn the relations between each time-point while simultaneously modelling and predicting several output variables. We apply this model to predict together diagnosis, ventricle volume, and clinical scores in dementia. The results demonstrate that SSHIBA is capable of learning a good imputation of the missing values and outperforming the baselines while simultaneously predicting three different tasks.