论文标题
与混合物统一流行模型
Unifying Epidemic Models with Mixtures
论文作者
论文摘要
COVID-19大流行强调了对流行模型的强烈理解的必要性。流行病的当前模型被归类为机械或非机械力学:机械模型对疾病的动力学做出了明确的假设,而非机械模型对观察到的时间序列的形式进行了假设。在这里,我们介绍了一个简单的基于混合的模型,该模型桥接了两种方法,同时保留了两者的益处。该模型代表案例和死亡的时间序列作为高斯曲线的混合物,提供了一个灵活的功能类别,可以从数据中学习与传统机械模型相比。尽管该模型是非机械机械的,但我们表明它是基于网络SIR框架的随机过程的自然结果。与类似的非机械模型相比,这允许学习的参数可以采用更有意义的解释,并且我们使用在Covid-19大流行期间收集的辅助移动性数据来验证解释。我们提供了一种简单的学习算法来识别模型参数并建立理论结果,以表明该模型可以从数据中有效学习。从经验上讲,我们发现该模型的预测误差较低。该模型可在covidpredictions.mit.edu现场现场使用。最终,这使我们能够系统地了解Covid-19的干预措施的影响,这对于开发以数据驱动的解决方案来控制流行病至关重要。
The COVID-19 pandemic has emphasized the need for a robust understanding of epidemic models. Current models of epidemics are classified as either mechanistic or non-mechanistic: mechanistic models make explicit assumptions on the dynamics of disease, whereas non-mechanistic models make assumptions on the form of observed time series. Here, we introduce a simple mixture-based model which bridges the two approaches while retaining benefits of both. The model represents time series of cases and fatalities as a mixture of Gaussian curves, providing a flexible function class to learn from data compared to traditional mechanistic models. Although the model is non-mechanistic, we show that it arises as the natural outcome of a stochastic process based on a networked SIR framework. This allows learned parameters to take on a more meaningful interpretation compared to similar non-mechanistic models, and we validate the interpretations using auxiliary mobility data collected during the COVID-19 pandemic. We provide a simple learning algorithm to identify model parameters and establish theoretical results which show the model can be efficiently learned from data. Empirically, we find the model to have low prediction error. The model is available live at covidpredictions.mit.edu. Ultimately, this allows us to systematically understand the impacts of interventions on COVID-19, which is critical in developing data-driven solutions to controlling epidemics.