论文标题
ImageMech:从图像到粒子弹簧网络的机械表征
ImageMech: From image to particle spring network for mechanical characterization
论文作者
论文摘要
对先进结构和生物学材料的新兴需求要求使用新型建模工具,这些工具可以快速对设计周期中材料特性进行高保真估计。晶格弹簧模型(LSM)是一种粗粒粒子弹簧网络,近年来引起了人们的注意,以预测机械性能并深入了解具有高可重复性和普遍性的断裂机制。但是,为了详细地模拟材料以确保数值稳定性和收敛性,大多数情况下需要大量粒子,从而大大减少了高通量计算的潜力,并为机器学习框架提供了数据生成。在这里,我们实现了culsm,这是一个gpu加速的cuda c ++代码在弹簧列表上实现并行性,而不是常用的空间分解,这需要在粒子邻居列表上进行间歇性更新。除了图像到粒子转换工具IMG2粒子外,我们的工具包还提供了一个快速,灵活的平台,以表征材料的弹性和断裂行为,从而加快了加性制造和计算机辅助设计之间的设计过程。随着对新的轻巧,适应性和多功能材料和结构的需求不断增长,这种量身定制和优化的建模平台具有深远的影响,可以在设计空间中更快地探索,通过数字双胞胎技术对3D打印的更好质量控制,以及用于基于图像的基于图像的生成机器学习模型的大量数据生成管道。
The emerging demand for advanced structural and biological materials calls for novel modeling tools that can rapidly yield high-fidelity estimation on materials properties in design cycles. Lattice spring model (LSM), a coarse-grained particle spring network, has gained attention in recent years for predicting the mechanical properties and giving insights into the fracture mechanism with high reproducibility and generalizability. However, to simulate the materials in sufficient detail for guaranteed numerical stability and convergence, most of the time a large number of particles are needed, greatly diminishing the potential for high-throughput computation and therewith data generation for machine learning frameworks. Here, we implement CuLSM, a GPU-accelerated CUDA C++ code realizing parallelism over the spring list instead of the commonly used spatial decomposition, which requires intermittent updates on the particle neighbor list. Along with the image-to-particle conversion tool Img2Particle, our toolkit offers a fast and flexible platform to characterize the elastic and fracture behaviors of materials, expediting the design process between additive manufacturing and computer-aided design. With the growing demand for new lightweight, adaptable, and multi-functional materials and structures, such tailored and optimized modeling platform has profound impacts, enabling faster exploration in design spaces, better quality control for 3D printing by digital twin techniques, and larger data generation pipelines for image-based generative machine learning models.