论文标题

自动标签以生成基于在线激光雷达的移动对象细分的培训数据

Automatic Labeling to Generate Training Data for Online LiDAR-based Moving Object Segmentation

论文作者

Chen, Xieyuanli, Mersch, Benedikt, Nunes, Lucas, Marcuzzi, Rodrigo, Vizzo, Ignacio, Behley, Jens, Stachniss, Cyrill

论文摘要

了解场景是自动驾驶车辆的关键,并且能够将周围环境分割为移动和非移动对象的能力是该任务的核心成分。通常,基于深度学习的方法用于执行移动对象分割(MOS)。但是,这些网络的性能在很大程度上取决于标记的培训数据的多样性和数量,这些信息可能会昂贵。在本文中,我们为3D激光雷达数据提出了一个自动数据标记管道,以节省大量的手动标记工作,并通过自动生成标记的培训数据来提高现有基于学习的MOS系统的性能。我们提出的方法通过分批离线处理数据来实现这一目标。它首先利用基于占用率的动态对象去除,以检测可能的动态对象。其次,它在提案中提取段,并使用卡尔曼过滤器跟踪它们。根据轨迹的轨迹,它标记了实际移动的物体,例如驾驶汽车和行人的移动。相比之下,非移动物体(例如停放的汽车,灯,道路或建筑物)被标记为静态。我们表明,这种方法使我们能够高效地标记LiDAR数据,并将我们的结果与其他标签生成方法的结果进行比较。与在相同数据上使用手动标签的培训相比,我们还使用自动生成的标签训练一个深层的神经网络,并取得相似的性能,并且在使用与我们的方法生成的标签的其他数据集时相同的性能。此外,我们使用不同的传感器在多个数据集上评估我们的方法,我们的实验表明我们的方法可以在不同的环境中生成标签。

Understanding the scene is key for autonomously navigating vehicles and the ability to segment the surroundings online into moving and non-moving objects is a central ingredient for this task. Often, deep learning-based methods are used to perform moving object segmentation (MOS). The performance of these networks, however, strongly depends on the diversity and amount of labeled training data, information that may be costly to obtain. In this paper, we propose an automatic data labeling pipeline for 3D LiDAR data to save the extensive manual labeling effort and to improve the performance of existing learning-based MOS systems by automatically generating labeled training data. Our proposed approach achieves this by processing the data offline in batches. It first exploits an occupancy-based dynamic object removal to detect possible dynamic objects coarsely. Second, it extracts segments among the proposals and tracks them using a Kalman filter. Based on the tracked trajectories, it labels the actually moving objects such as driving cars and pedestrians as moving. In contrast, the non-moving objects, e.g., parked cars, lamps, roads, or buildings, are labeled as static. We show that this approach allows us to label LiDAR data highly effectively and compare our results to those of other label generation methods. We also train a deep neural network with our auto-generated labels and achieve similar performance compared to the one trained with manual labels on the same data, and an even better performance when using additional datasets with labels generated by our approach. Furthermore, we evaluate our method on multiple datasets using different sensors and our experiments indicate that our method can generate labels in diverse environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源