论文标题

在大数据架构的丛林中找到自己的方式

Finding Your Way Through the Jungle of Big Data Architectures

论文作者

Priebe, Torsten, Neumaier, Sebastian, Markus, Stefan

论文摘要

本文对基于Dama-Dmbok和Archimate的常见分析数据架构进行了系统的综述。该论文正在进行中,并提供了有关Gartner的逻辑数据仓库范式,数据结构和Dehghani的数据网格建议及其相互依赖性的第一视图。它还草拟了如何通过涵盖更多的架构范例(包括经典数据仓库,数据库,数据湖,lambda和Kappa体系结构),并引入具有“上下文”,“问题”和“解决方案”描述的模板,最终为Primend Systems Archite pardecture pardigs pardigm pardigm pardigm pardigm pardigmm介绍。

This paper presents a systematic review of common analytical data architectures based on DAMA-DMBOK and ArchiMate. The paper is work in progress and provides a first view on Gartner's Logical Data Warehouse paradigm, Data Fabric and Dehghani's Data Mesh proposal as well as their interdependencies. It furthermore sketches the way forward how this work can be extended by covering more architecture paradigms (incl. classic Data Warehouse, Data Vault, Data Lake, Lambda and Kappa architectures) and introducing a template with among others "context", "problem" and "solution" descriptions, leading ultimately to a pattern system providing guidance for choosing the right architecture paradigm for the right situation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源