论文标题
低场微波传感器,使用碳化硅中四重奏旋转状态的偶极自旋松弛
Low-field microwave-free sensors using dipolar spin relaxation of quartet spin states in silicon carbide
论文作者
论文摘要
顺磁性缺陷和核自旋是磁场依赖性自旋弛豫量的主要来源。相关光学信号的检测导致了具有高空间分辨率的高级松弛计应用的开发。碳化硅(SIC)中硅空位矩置二极管的几乎退化的四重奏基态在这方面具有特殊的兴趣,因为它在消失的磁场值中引起了放松速率极值,并在生物组织的第一个近红外传输窗口中发射,为开发新型医学和生物学的新型传感应用提供了机会。但是,尚未完全探索SIC硅空置中心的放松动力学。在本文中,我们介绍了对各种本地自旋环境中四重奏旋转状态的偶极自旋松弛的全面理论研究的结果。我们讨论了基本的物理,并量化磁场和旋转浴的放松时间$ T_1 $。使用这些发现,我们证明了SIC中的硅空置二极管可以实现无微波的低磁场量子传感器,具有巨大的潜力。
Paramagnetic defects and nuclear spins are the major sources of magnetic field-dependent spin relaxation in point defect quantum bits. The detection of related optical signals has led to the development of advanced relaxometry applications with high spatial resolution. The nearly degenerate quartet ground state of the silicon vacancy qubit in silicon carbide (SiC) is of special interest in this respect, as it gives rise to relaxation rate extrema at vanishing magnetic field values and emits in the first near-infra-red transmission window of biological tissues, providing an opportunity for developing novel sensing applications for medicine and biology. However, the relaxation dynamics of the silicon vacancy center in SiC have not yet been fully explored. In this paper, we present results from a comprehensive theoretical investigation of the dipolar spin relaxation of the quartet spin states in various local spin environments. We discuss the underlying physics and quantify the magnetic field and spin bath dependent relaxation time $T_1$. Using these findings we demonstrate that the silicon vacancy qubit in SiC can implement microwave-free low magnetic field quantum sensors of great potential.