论文标题

一个有效的本地反应性控制器,可在视觉教学和重复任务中安全导航

An Efficient Locally Reactive Controller for Safe Navigation in Visual Teach and Repeat Missions

论文作者

Mattamala, Matías, Chebrolu, Nived, Fallon, Maurice

论文摘要

为了实现成功的现场自主权,移动机器人需要自由地适应其环境的变化。视觉导航系统(例如Visual Techn and Reple(VT&R))通常会假设参考轨迹周围的空间是免费的,但是如果环境被阻塞,则路径跟踪可能会失败,或者机器人可能会与以前看不见的障碍物相撞。在这项工作中,我们为VT&R系统提供了一个本地反应性控制器,即使对环境进行了物理变化,它允许机器人安全导航。我们的控制器使用本地高程图来计算向量表示,并输出10 Hz导航的扭曲命令。它们组合成riemannian运动策略(RMP)控制器,该控制器需要<2 ms才能在CPU上运行。我们将控制器与VT&R系统集成了Anymal C机器人,并在室内混乱的空间和大型地下矿山中对其进行了测试。我们证明,当物理阻塞或视觉跟踪丢失发生时,例如在靠近墙壁,越过门口或穿越狭窄的走廊时,我们的本地反应性控制器可以确保机器人的安全。视频:https://youtu.be/g_awnec5awu

To achieve successful field autonomy, mobile robots need to freely adapt to changes in their environment. Visual navigation systems such as Visual Teach and Repeat (VT&R) often assume the space around the reference trajectory is free, but if the environment is obstructed path tracking can fail or the robot could collide with a previously unseen obstacle. In this work, we present a locally reactive controller for a VT&R system that allows a robot to navigate safely despite physical changes to the environment. Our controller uses a local elevation map to compute vector representations and outputs twist commands for navigation at 10 Hz. They are combined in a Riemannian Motion Policies (RMP) controller that requires <2 ms to run on a CPU. We integrated our controller with a VT&R system onboard an ANYmal C robot and tested it in indoor cluttered spaces and a large-scale underground mine. We demonstrate that our locally reactive controller keeps the robot safe when physical occlusions or loss of visual tracking occur such as when walking close to walls, crossing doorways, or traversing narrow corridors. Video: https://youtu.be/G_AwNec5AwU

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源