论文标题
修饰重力中紧凑物体的准静态演变
Quasi Static Evolution of Compact Objects in Modified Gravity
论文作者
论文摘要
在本文中,在$ f(r,t)$ gravity中提出了关于紧凑型物体流体动力学的准静态应用,其中$ r $是标量曲率,$ t $是通过探索轴向和反射对称的对称的轴向时间填充Anisotroprop and Explipertipertipertipertipertiperatiperiperiperatipertiperatiper的压力 - 能量张量的痕迹。定义了一组不变式 - 速度,以理解准静态应用的概念。结果,通过分析此近似中相应的修改场,动力学和标量方程来唤起所有可行结果,可以显示紧凑对象的演变。此外,通过提出的近似值可以找到运动量,修饰的热升级和标量变量的重要性。
In this paper, the quasi static-approximation on the hydrodynamics of compact objects is proposed in $f(R, T)$ gravity, where $R$ is the scalar curvature and $T$ is the trace of stress-energy tensor, by exploring the axial and reflection symmetric space time stuffed with anisotropic and dissipative matter contents. The set of invariant-velocities is defined to comprehend the concept of quasi static-approximation. As a consequence, the evolution of compact objects is shown by analyzing the corresponding modified field, dynamical and scalar equations in this approximation to evoke all the feasible outcomes. Furthermore, the significance of kinematical quantities, modified heat-fluxes and scalar variables are found through the proposed approximation.