论文标题
手性诱导的自旋选择性中的电荷捕获和皮肤效应引起的磁对病毒电荷泵
Magnetochiral Charge Pumping due to Charge Trapping and Skin Effect in Chirality-Induced Spin Selectivity
论文作者
论文摘要
手性诱导的自旋选择性(CISS)在通过手性分子的传输中产生巨大的自旋极化,为新型的自旋装置和对映异构体分离铺平了道路。与常规运输不同,CISS磁阻(MR)违反了Onsager的倒数关系,在逆转零偏置的电极磁化时会显示出显着的电阻变化。但是,其基本机制仍未解决。在这项工作中,我们提出CISS MR源自电荷捕获,该电荷捕获改变了电子隧道障碍,并绕过Onsager的关系,与以前的基于自旋极化模型不同。电荷诱捕受非铁皮皮肤效应的控制,其中耗散导致指数波函数在铁磁性分子界面处定位。逆转磁化或手性改变了定位方向,改变了分子中杂质/缺陷态的占用(即电荷捕获) - 一种现象,我们术语磁性磁管电荷泵送。我们的理论解释了为什么CISS MR远远超过了Ferromagnet自旋极化,以及为什么手性分子违反了相互关系,而手性金属则没有。此外,它预测了传统CISS框架以外的外来现象,包括仅由磁场引起的不对称MR(没有铁磁电极),如最近的实验所证实。这项工作提供了对CISS的更深入的了解,并开放了通过磁管病毒电荷泵送来控制化学和生物系统中静电相互作用的途径。
Chirality-induced spin selectivity (CISS) generates giant spin polarization in transport through chiral molecules, paving the way for novel spintronic devices and enantiomer separation. Unlike conventional transport, CISS magnetoresistance (MR) violates Onsager's reciprocal relation, exhibiting significant resistance changes when reversing electrode magnetization at zero bias. However, its underlying mechanism remains unresolved. In this work, we propose that CISS MR originates from charge trapping that modifies the electron tunneling barrier and circumvents Onsager's relation, distinct from previous spin polarization-based models. Charge trapping is governed by the non-Hermitian skin effect, where dissipation leads to exponential wavefunction localization at the ferromagnet-chiral molecule interface. Reversing magnetization or chirality alters the localization direction, changing the occupation of impurity/defect states in the molecule (i.e., charge trapping) -- a phenomenon we term magnetochiral charge pumping. Our theory explains why CISS MR can far exceed the ferromagnet spin polarization and why chiral molecules violate the reciprocal relation but chiral metals do not. Furthermore, it predicts exotic phenomena beyond the conventional CISS framework, including asymmetric MR induced by magnetic fields alone (without ferromagnetic electrodes), as confirmed by recent experiments. This work offers a deeper understanding of CISS and opens avenues for controlling electrostatic interactions in chemical and biological systems through the magnetochiral charge pumping.