论文标题

二阶抽象语法的形式元看

Formal Metatheory of Second-Order Abstract Syntax

论文作者

Fiore, Marcelo, Szamozvancev, Dmitrij

论文摘要

尽管在理论和实用方面进行了广泛的研究,但具有变化可变的语言的形式化,推理和实施语言仍然是一项艰巨的努力 - 重复的样板以及过于复杂的避免捕获替代的过度复杂性,通常会以进步的方式进入真正有趣的语言。现有的发展提供了一些缓解,但是牺牲了不便且容易出错的期限编码和缺乏正式基础。 我们提出了在AGDA中实施的数学启发的语言基本化框架。该系统将带有可变结合运算符的语法签名的描述转化为具有语法操作(例如弱化和替代)的本质编码的归纳数据类型以及其正确性属性。生成的Metatheory进一步结合了Metavariables及其相关的Metasubstitution的操作,这使二阶方程/重写推理。框架的基本数学基础 - 初始代数语义 - 将语言的组成解释推导到其模型中,从而满足了通过构造的语义替代引理。

Despite extensive research both on the theoretical and practical fronts, formalising, reasoning about, and implementing languages with variable binding is still a daunting endeavour - repetitive boilerplate and the overly complicated metatheory of capture-avoiding substitution often get in the way of progressing on to the actually interesting properties of a language. Existing developments offer some relief, however at the expense of inconvenient and error-prone term encodings and lack of formal foundations. We present a mathematically-inspired language-formalisation framework implemented in Agda. The system translates the description of a syntax signature with variable-binding operators into an intrinsically-encoded, inductive data type equipped with syntactic operations such as weakening and substitution, along with their correctness properties. The generated metatheory further incorporates metavariables and their associated operation of metasubstitution, which enables second-order equational/rewriting reasoning. The underlying mathematical foundation of the framework - initial algebra semantics - derives compositional interpretations of languages into their models satisfying the semantic substitution lemma by construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源