论文标题

快速MRI的Swin Transformer

Swin Transformer for Fast MRI

论文作者

Huang, Jiahao, Fang, Yingying, Wu, Yinzhe, Wu, Huanjun, Gao, Zhifan, Li, Yang, Del Ser, Javier, Xia, Jun, Yang, Guang

论文摘要

磁共振成像(MRI)是一种重要的非侵入性临床工具,可以产生高分辨率和可重复的图像。但是,高质量的MR图像需要长时间的扫描时间,这会导致患者的疲惫和不适,由于患者的自愿运动和非自愿性生理运动,引起了更多的人工制作。为了加速扫描过程,k空间不足采样和基于深度学习的重建的方法已经普及。这项工作引入了SwinMR,这是一种基于SWIN变压器的新型快速MRI重建方法。整个网络由输入模块(IM),特征提取模块(FEM)和输出模块(OM)组成。 IM和OM是2D卷积层,FEM由残留的Swin变压器块(RSTBS)和2D卷积层组成。 RSTB由一系列SWIN变压器层(STL)组成。 STL的移位窗户多头自我注意力(W-MSA/SW-MSA)是在移动的窗口中进行的,而不是整个图像空间中原始变压器的多头自我注意力(MSA)。通过使用灵敏度图提出了一种新型的多通道损失,该图被证明可以保留更多的纹理和细节。我们在Calgary-campinas公共脑MR数据集中进行了一系列比较研究和消融研究,并在2017年多模式脑肿瘤分割挑战挑战中进行了下游分割实验。结果表明,与其他基准方法相比,我们的SWINMR实现了高质量的重建,并且在噪声中断和不同数据集中显示出极大的鲁棒性,并且具有不同的无底采样口罩。该代码可在https://github.com/ayanglab/swinmr上公开获取。

Magnetic resonance imaging (MRI) is an important non-invasive clinical tool that can produce high-resolution and reproducible images. However, a long scanning time is required for high-quality MR images, which leads to exhaustion and discomfort of patients, inducing more artefacts due to voluntary movements of the patients and involuntary physiological movements. To accelerate the scanning process, methods by k-space undersampling and deep learning based reconstruction have been popularised. This work introduced SwinMR, a novel Swin transformer based method for fast MRI reconstruction. The whole network consisted of an input module (IM), a feature extraction module (FEM) and an output module (OM). The IM and OM were 2D convolutional layers and the FEM was composed of a cascaded of residual Swin transformer blocks (RSTBs) and 2D convolutional layers. The RSTB consisted of a series of Swin transformer layers (STLs). The shifted windows multi-head self-attention (W-MSA/SW-MSA) of STL was performed in shifted windows rather than the multi-head self-attention (MSA) of the original transformer in the whole image space. A novel multi-channel loss was proposed by using the sensitivity maps, which was proved to reserve more textures and details. We performed a series of comparative studies and ablation studies in the Calgary-Campinas public brain MR dataset and conducted a downstream segmentation experiment in the Multi-modal Brain Tumour Segmentation Challenge 2017 dataset. The results demonstrate our SwinMR achieved high-quality reconstruction compared with other benchmark methods, and it shows great robustness with different undersampling masks, under noise interruption and on different datasets. The code is publicly available at https://github.com/ayanglab/SwinMR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源