论文标题
通过共同信息最大化保存域私人表示
Preserving Domain Private Representation via Mutual Information Maximization
论文作者
论文摘要
无监督的域适应性的最新进展表明,通过提取域不变表示来减轻域的差异可以显着改善模型对未标记的数据域的概括。然而,现有方法无法有效地保留标签失误域私有的表示形式,这可能会对概括产生不利影响。在本文中,我们提出了一种保留这种表示形式的方法,以便未标记的域的潜在分布可以代表域不变的特征,又代表了未标记域的私人特征。特别是,我们证明,在未标记的域及其潜在空间之间最大程度地提高了相互信息,同时减轻域差异可以实现这种保存。我们在理论上和经验上还验证了保留未标记域私有的表示形式很重要,并且需要进行跨域泛化。我们的方法在几个公共数据集上的表现优于最先进的方法。
Recent advances in unsupervised domain adaptation have shown that mitigating the domain divergence by extracting the domain-invariant representation could significantly improve the generalization of a model to an unlabeled data domain. Nevertheless, the existing methods fail to effectively preserve the representation that is private to the label-missing domain, which could adversely affect the generalization. In this paper, we propose an approach to preserve such representation so that the latent distribution of the unlabeled domain could represent both the domain-invariant features and the individual characteristics that are private to the unlabeled domain. In particular, we demonstrate that maximizing the mutual information between the unlabeled domain and its latent space while mitigating the domain divergence can achieve such preservation. We also theoretically and empirically validate that preserving the representation that is private to the unlabeled domain is important and of necessity for the cross-domain generalization. Our approach outperforms state-of-the-art methods on several public datasets.