论文标题

Viro-Zvonilov在几乎复杂的四维流形上的柔性曲线的不平等现象

Viro-Zvonilov inequalities for flexible curves on an almost complex four-dimensional manifold

论文作者

Zvonilov, V. I.

论文摘要

O. viro和在90年代初发表的论文中获得的非源性平面射击实际代数曲线的拓扑拓扑的限制被扩展到位于几乎复杂的四维歧管上的柔性曲线。实际代数表面和实际曲线的一些例子证明了所获得的不平等的清晰度。 此外,事实证明,在封闭的四维歧管上,可以将紧凑的谎言组平滑动作提升到循环的覆盖空间$ \ tilde {x} $,并且发现了$ H_1(\ tilde {x}} = 0 $ $ h_1)的足够条件。

The restrictions on the topology of nonsingular plane projective real algebraic curves of odd degree, obtained by O. Viro and the author in the paper published in the early 90s, are extended to flexible curves lying on an almost complex four-dimensional manifold. Some examples of real algebraic surfaces and real curves on them prove the sharpness of the obtained inequalities. In addition, it is proved that a compact Lie group smooth action can be lifted to a cyclic branched covering space $ \tilde{X} $ over a closed four-dimensional manifold, and a sufficient condition for $ H_1(\tilde{X})=0 $ was found.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源