论文标题

具有多个重量功能的逆优化问题

Inverse optimization problems with multiple weight functions

论文作者

Bérczi, Kristóf, Mendoza-Cadena, Lydia Mirabel, Varga, Kitti

论文摘要

我们引入了一类新的反优化问题,其中将输入解决方案与$ k $线性权重功能一起提供,目标是通过相同的偏差向量$ p $修改权重,以使输入解决方案相对于每个偏离,而最小化$ \ | | p \ | p \ | _1 $。特别是,我们专注于具有多个重量功能的三个问题:最短的$ s $ - $ t $路径,逆二分之一的完美匹配以及逆动画问题。使用LP二元性,我们为最佳偏差向量的$ \ ell_1 $ norm提供了最低最大特征。此外,我们表明,即使权重功能如此,最佳$ p $也不一定是不可或缺的,因此计算最佳解决方案要比单个加权情况要困难得多。我们还为存在最佳偏差矢量的存在提供了必要的条件,该矢量仅在输入解决方案的元素上更改值,从而对先前的arborescence和unteratives群体有了统一的理解。

We introduce a new class of inverse optimization problems in which an input solution is given together with $k$ linear weight functions, and the goal is to modify the weights by the same deviation vector $p$ so that the input solution becomes optimal with respect to each of them, while minimizing $\|p\|_1$. In particular, we concentrate on three problems with multiple weight functions: the inverse shortest $s$-$t$ path, the inverse bipartite perfect matching, and the inverse arborescence problems. Using LP duality, we give min-max characterizations for the $\ell_1$-norm of an optimal deviation vector. Furthermore, we show that the optimal $p$ is not necessarily integral even when the weight functions are so, therefore computing an optimal solution is significantly more difficult than for the single-weighted case. We also give a necessary and sufficient condition for the existence of an optimal deviation vector that changes the values only on the elements of the input solution, thus giving a unified understanding of previous results on arborescences and matchings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源