论文标题
施普林格品种的K理论
K-theory of Springer varieties
论文作者
论文摘要
本文的目的是在发电机和关系方面描述平式品种$ \ MATHCAL {F}_λ$ a $ a $ a $ a $ a $ a $的拓扑$ k $ ring。我们的描述与$ \ Mathcal {f}_λ$的整体共同学环的描述以及由于安倍和Horiguchi而导致的e象类似物。
The aim of this paper is to describe the topological $K$-ring, in terms of generators and relations, of a Springer variety $\mathcal{F}_λ$ of type $A$ associated to a nilpotent operator having Jordan canonical form whose block sizes form a weakly decreasing sequence $λ=(λ_1,\ldots, λ_l)$. Our description parallels the description of the integral cohomology ring of $\mathcal{F}_λ$ due to Tanisaki and also the equivariant analogue due to Abe and Horiguchi.