论文标题
通过对抗训练对COVID-19的隐私意识早期检测
Privacy-aware Early Detection of COVID-19 through Adversarial Training
论文作者
论文摘要
早期发现COVID-19是一个正在进行的研究领域,可以帮助对潜在患者进行分类,监测和一般健康评估,并可能减少应对冠状病毒大流行的医院的运作压力。文献中已经使用了不同的机器学习技术来使用常规临床数据(血液检查和生命体征)检测冠状病毒。使用这些模型时,数据泄露和信息泄漏可能会带来声誉损失,并给医院带来法律问题。尽管如此,保护医疗保健模型免受潜在敏感信息的泄漏是一个研究的研究领域。在这项工作中,我们检查了两种机器学习方法,旨在使用常规收集且容易获得的临床数据来预测患者的Covid-19状态。我们采用对抗性培训来探索强大的深度学习体系结构,以保护与患者人口统计学信息有关的属性。我们在这项工作中检查的两个模型旨在保留针对对抗性攻击和信息泄漏的敏感信息。在一系列实验中,使用牛津大学医院的数据集,贝德福德郡医院NHS基金会信托基金会,伯明翰大学医院NHS基金会信托基金会和朴次茅斯医院NHS Trust我们培训和测试两个神经网络,这些神经网络可以通过基本实验室血液测试的信息以及对患者的至关重要的迹象进行预测PCR测试结果。我们评估每个模型都可以提供并显示我们提出的架构对基线的效果和鲁棒性的隐私水平。我们的主要贡献之一是,我们专门针对具有内置机制的有效Covid-19检测模型的开发,以选择性地保护敏感属性免受对抗攻击。
Early detection of COVID-19 is an ongoing area of research that can help with triage, monitoring and general health assessment of potential patients and may reduce operational strain on hospitals that cope with the coronavirus pandemic. Different machine learning techniques have been used in the literature to detect coronavirus using routine clinical data (blood tests, and vital signs). Data breaches and information leakage when using these models can bring reputational damage and cause legal issues for hospitals. In spite of this, protecting healthcare models against leakage of potentially sensitive information is an understudied research area. In this work, we examine two machine learning approaches, intended to predict a patient's COVID-19 status using routinely collected and readily available clinical data. We employ adversarial training to explore robust deep learning architectures that protect attributes related to demographic information about the patients. The two models we examine in this work are intended to preserve sensitive information against adversarial attacks and information leakage. In a series of experiments using datasets from the Oxford University Hospitals, Bedfordshire Hospitals NHS Foundation Trust, University Hospitals Birmingham NHS Foundation Trust, and Portsmouth Hospitals University NHS Trust we train and test two neural networks that predict PCR test results using information from basic laboratory blood tests, and vital signs performed on a patients' arrival to hospital. We assess the level of privacy each one of the models can provide and show the efficacy and robustness of our proposed architectures against a comparable baseline. One of our main contributions is that we specifically target the development of effective COVID-19 detection models with built-in mechanisms in order to selectively protect sensitive attributes against adversarial attacks.