论文标题
深度学习无污染,用于强大的亚盐波形反演
Deep learning unflooding for robust subsalt waveform inversion
论文作者
论文摘要
有望提供高分辨率模型的一种流行技术,有助于改善倒速度模型中的盐定义,这是一种流行的技术。反演的成功在很大程度上取决于对盐的先验知识,并使用具有长时间偏移和低频的先进采集技术。盐体通常是通过从地震图像中递归从与层析成像模型相对应的地震图像的顶部和底部构建的,该图像结合了洪水技术。该过程耗时,很容易出错,尤其是在选择盐的底部(BOS)时。许多研究表明,在构造盐体后,用长偏移和低频进行FWI以纠正错过解剖的边界。在这里,我们专注于通过使用深度学习工具自动检测BOS。我们专门生成许多随机1D模型,这些模型包含或不含盐体,并计算相应的射击聚集器。然后,我们使用FWI从这些模型的盐泛滥版本开始,FWI的结果成为神经网络的输入,而相应的真实1D模型是输出。该网络以回归方式进行训练,以检测BOS并估计亚物质速度。我们分析了创建培训数据集并在2D BP 2004 Salt模型上测试其性能的三种情况。我们表明,当网络成功估计亚物质速度时,低频和长偏移的要求会有所缓解。通常,这项工作使我们能够将自上而下的方法与FWI合并,节省BOS的拾取时间,并在数据中没有低频和长时间的偏移量的情况下授权FWI收敛。
Full-waveform inversion (FWI), a popular technique that promises high-resolution models, has helped in improving the salt definition in inverted velocity models. The success of the inversion relies heavily on having prior knowledge of the salt, and using advanced acquisition technology with long offsets and low frequencies. Salt bodies are often constructed by recursively picking the top and bottom of the salt from seismic images corresponding to tomography models, combined with flooding techniques. The process is time-consuming and highly prone to error, especially in picking the bottom of the salt (BoS). Many studies suggest performing FWI with long offsets and low frequencies after constructing the salt bodies to correct the miss-interpreted boundaries. Here, we focus on detecting the BoS automatically by utilizing deep learning tools. We specifically generate many random 1D models, containing or free of salt bodies, and calculate the corresponding shot gathers. We then apply FWI starting with salt flooded versions of those models, and the results of the FWI become inputs to the neural network, whereas the corresponding true 1D models are the output. The network is trained in a regression manner to detect the BoS and estimate the subsalt velocity. We analyze three scenarios in creating the training datasets and test their performance on the 2D BP 2004 salt model. We show that when the network succeeds in estimating the subsalt velocity, the requirement of low frequencies and long offsets are somewhat mitigated. In general, this work allows us to merge the top-to-bottom approach with FWI, save the BoS picking time, and empower FWI to converge in the absence of low frequencies and long offsets in the data.