论文标题

具体的手:一起建模和捕获手和身体

Embodied Hands: Modeling and Capturing Hands and Bodies Together

论文作者

Romero, Javier, Tzionas, Dimitrios, Black, Michael J.

论文摘要

人类将双手和身体一起移动,以交流和解决任务。捕获和复制这种协调的活动对于现实行为的虚拟字符至关重要。令人惊讶的是,大多数方法分别对身体和手的3D建模和跟踪进行了处理。在这里,我们制定了一种相互作用的手和身体模型,并将其拟合到全身4D序列中。当用3D扫描或捕获全身时,手很小,通常被部分遮住,使它们的形状和姿势难以恢复。为了应对低分辨率,遮挡和噪声,我们开发了一种称为Mano的新模型(具有铰接和非刚性变形的手部模型)。从大约1000个高分辨率3D扫描31名受试者的手中的大约1000个高分辨率3D扫描中学到了Mano。该模型是现实的,低维的,可捕获与姿势的非刚性形状变化,与标准图形包兼容,并且可以适合任何人类的手。 Mano提供了从手姿势到姿势混合形状校正和姿势协同作用的线性歧管的紧凑映射。我们将MANO连接到标准的参数化3D体形模型(SMPL),从而产生了完全铰接的身体和手部模型(SMPL+H)。我们通过拟合使用4D扫描仪捕获的受试者的自然活动来说明SMPL+H。拟合是完全自动的,并产生了全身模型,这些模型自然而然地以详细的手动运动和一个现实主义的捕获,而在全身性能捕获中未见。这些模型和数据可在我们的网站(http://mano.is.tue.mpg.de)中自由使用。

Humans move their hands and bodies together to communicate and solve tasks. Capturing and replicating such coordinated activity is critical for virtual characters that behave realistically. Surprisingly, most methods treat the 3D modeling and tracking of bodies and hands separately. Here we formulate a model of hands and bodies interacting together and fit it to full-body 4D sequences. When scanning or capturing the full body in 3D, hands are small and often partially occluded, making their shape and pose hard to recover. To cope with low-resolution, occlusion, and noise, we develop a new model called MANO (hand Model with Articulated and Non-rigid defOrmations). MANO is learned from around 1000 high-resolution 3D scans of hands of 31 subjects in a wide variety of hand poses. The model is realistic, low-dimensional, captures non-rigid shape changes with pose, is compatible with standard graphics packages, and can fit any human hand. MANO provides a compact mapping from hand poses to pose blend shape corrections and a linear manifold of pose synergies. We attach MANO to a standard parameterized 3D body shape model (SMPL), resulting in a fully articulated body and hand model (SMPL+H). We illustrate SMPL+H by fitting complex, natural, activities of subjects captured with a 4D scanner. The fitting is fully automatic and results in full body models that move naturally with detailed hand motions and a realism not seen before in full body performance capture. The models and data are freely available for research purposes in our website (http://mano.is.tue.mpg.de).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源