论文标题

致密的长尾对象检测的均衡焦点损失

Equalized Focal Loss for Dense Long-Tailed Object Detection

论文作者

Li, Bo, Yao, Yongqiang, Tan, Jingru, Zhang, Gang, Yu, Fengwei, Lu, Jianwei, Luo, Ye

论文摘要

尽管长尾对象检测最近取得了成功,但几乎所有长尾对象探测器都是根据两阶段范式开发的。实际上,一阶段探测器在行业中更为普遍,因为它们具有易于部署的简单快速管道。但是,在长期的情况下,到目前为止尚未探索这种工作。在本文中,我们研究了在这种情况下单阶段探测器是否可以表现良好。我们发现,阻止一阶段探测器无法实现出色性能的主要障碍是:在长尾数据分布下,类别遭受了不同程度的正(阳性不平衡问题)。常规的焦点损失将训练过程与所有类别的调节因素保持平衡,因此未能解决长尾问题。为了解决这个问题,我们提出了均衡的局灶性损失(EFL),以根据其不平衡程度独立地重新平衡不同类别的正和负样本的损失贡献。具体而言,EFL采用了与类别相关的调节因素,可以通过不同类别的训练状态动态调整该因素。对具有挑战性的LVIS V1基准进行的广泛实验证明了我们提出的方法的有效性。通过端到端的培训管道,EF​​L在整体AP方面达到了29.2%,并在稀有类别上获得了显着的性能提高,超过了所有现有的最新方法。该代码可在https://github.com/modeltc/eod上找到。

Despite the recent success of long-tailed object detection, almost all long-tailed object detectors are developed based on the two-stage paradigm. In practice, one-stage detectors are more prevalent in the industry because they have a simple and fast pipeline that is easy to deploy. However, in the long-tailed scenario, this line of work has not been explored so far. In this paper, we investigate whether one-stage detectors can perform well in this case. We discover the primary obstacle that prevents one-stage detectors from achieving excellent performance is: categories suffer from different degrees of positive-negative imbalance problems under the long-tailed data distribution. The conventional focal loss balances the training process with the same modulating factor for all categories, thus failing to handle the long-tailed problem. To address this issue, we propose the Equalized Focal Loss (EFL) that rebalances the loss contribution of positive and negative samples of different categories independently according to their imbalance degrees. Specifically, EFL adopts a category-relevant modulating factor which can be adjusted dynamically by the training status of different categories. Extensive experiments conducted on the challenging LVIS v1 benchmark demonstrate the effectiveness of our proposed method. With an end-to-end training pipeline, EFL achieves 29.2% in terms of overall AP and obtains significant performance improvements on rare categories, surpassing all existing state-of-the-art methods. The code is available at https://github.com/ModelTC/EOD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源