论文标题
自相似湍流喷气机中的夹带,扩散和有效的可压缩性
Entrainment, diffusion and effective compressibility in a self-similar turbulent jet
论文作者
论文摘要
一项基于粒子跟踪速度法的实验性Lagrangian研究已在不可压缩的湍流圆形水流中完成,自由地扩散到水中。射流只有通过喷嘴将示踪剂播种:称为喷嘴播种的不均匀播种。因此,这些示踪剂标记的拉格朗日流不包含来自周围流体静止的颗粒的任何颗粒。发现喷嘴种子流的平均速度场,$ \ langle \ boldsymbol {u_φ} \ rangle $,与喷气式飞机的全球平均速度场基本上没有区别,$ \ langle \ langle \ boldsymbol \ boldsymbol {u} \ rangle $,inangle $ nakial veliions in Axial veliions deviation for rand veliation。这导致了喷嘴种子流的有效可压缩性,$ \ boldsymbol {\ nabla \ cdot} \ langle \ langle \ boldsymbol {u_φ} \ rangle \ neq 0 $即使全局背景流完全不可压缩。通过使用质量保护和自相似性,我们定量解释了修改的径向速度谱,并在分析上表达与夹带的流体颗粒相关的缺失贡献。通过考虑经典的对流扩散描述,我们将质量(通过湍流扩散$ k_t $)和动量(通过湍流粘度$ν_t$)明确将湍流扩散与夹带联系起来。这导致了新的实践关系,以实验性地确定$ k_t $和$ν_t$的非均匀空间概况(从而从平均捕捉器浓度和轴向速度型号的简单测量中的动荡的prandtl数字$σ_T=ν_t/k_t $)。总体而言,基于喷嘴种子流量的提议方法为新的实验和理论元素提供了对湍流射流中湍流扩散和夹带的更好理解。
An experimental Lagrangian study based on particle tracking velocimetry has been completed in an incompressible turbulent round water jet freely spreading into water. The jet is seeded with tracers only through the nozzle: inhomogeneous seeding called nozzle seeding. The Lagrangian flow tagged by these tracers therefore does not contain any contribution from particles entrained into the jet from the quiescent surrounding fluid. The mean velocity field of the nozzle seeded flow, $\langle \boldsymbol{U_φ} \rangle$, is found to be essentially indistinguishable from the global mean velocity field of the jet, $\langle \boldsymbol{U} \rangle$, for the axial velocity while significant deviations are found for the radial velocity. This results in an effective compressibility of the nozzle seeded flow for which $\boldsymbol{\nabla \cdot} \langle \boldsymbol{U_φ} \rangle \neq 0$ even though the global background flow is fully incompressible. By using mass conservation and self-similarity, we quantitatively explain the modified radial velocity profile and analytically express the missing contribution associated to entrained fluid particles. By considering a classical advection-diffusion description, we explicitly connect turbulent diffusion of mass (through the turbulent diffusivity $K_T$) and momentum (through the turbulent viscosity $ν_T$) to entrainment. This results in new practical relations to experimentally determine the non-uniform spatial profiles of $K_T$ and $ν_T$ (and hence of the turbulent Prandtl number $σ_T = ν_T/K_T$) from simple measurements of the mean tracer concentration and axial velocity profiles. Overall, the proposed approach based on nozzle seeded flow gives new experimental and theoretical elements for a better comprehension of turbulent diffusion and entrainment in turbulent jets.