论文标题
空间周期顺序序列超图网络,用于犯罪预测,并通过动态多重关系学习
Spatial-Temporal Sequential Hypergraph Network for Crime Prediction with Dynamic Multiplex Relation Learning
论文作者
论文摘要
犯罪预测对于公共安全和资源优化至关重要,但由于两个方面:i)跨时间和空间的犯罪模式的动态,犯罪事件的动态在空间和时间领域都不均匀地分布; ii)不同类型的犯罪(例如,盗窃,抢劫,攻击,损害)之间的时间发展依赖性,这些犯罪的语义细粒度的语义是犯罪的精细语义。为了应对这些挑战,我们提出了时空顺序超图网络(ST-SHN),以共同编码复杂的犯罪时空模式以及基本的类别犯罪犯罪语义关系。在远程和全局上下文下处理时空动力学,我们设计了一个图形结构化消息传递体系结构,并通过HyperGraph Learning范式的集成来设计时空动力学。为了在动态环境中捕获类别犯罪的异质关系,我们引入了一种多渠道路由机制,以学习跨犯罪类型的随着时间发展的结构依赖。我们在两个现实世界数据集上进行了广泛的实验,这表明我们提出的ST-SHN框架可以显着改善与各种最新基线相比的预测性能。源代码可在以下网址获得:https://github.com/akaxlh/st-shn。
Crime prediction is crucial for public safety and resource optimization, yet is very challenging due to two aspects: i) the dynamics of criminal patterns across time and space, crime events are distributed unevenly on both spatial and temporal domains; ii) time-evolving dependencies between different types of crimes (e.g., Theft, Robbery, Assault, Damage) which reveal fine-grained semantics of crimes. To tackle these challenges, we propose Spatial-Temporal Sequential Hypergraph Network (ST-SHN) to collectively encode complex crime spatial-temporal patterns as well as the underlying category-wise crime semantic relationships. In specific, to handle spatial-temporal dynamics under the long-range and global context, we design a graph-structured message passing architecture with the integration of the hypergraph learning paradigm. To capture category-wise crime heterogeneous relations in a dynamic environment, we introduce a multi-channel routing mechanism to learn the time-evolving structural dependency across crime types. We conduct extensive experiments on two real-world datasets, showing that our proposed ST-SHN framework can significantly improve the prediction performance as compared to various state-of-the-art baselines. The source code is available at: https://github.com/akaxlh/ST-SHN.