论文标题
石墨烯中的metasurface电子光学元件
Metasurface electron optics in graphene
论文作者
论文摘要
对于石墨烯中的电子光学,传播效应到目前为止是唯一可用的物理机制。由此产生的基于电子磁镜的组件尺寸较大,并且在低温下运行,以避免违反弹道传输极限。在本文中,介绍了用于石墨烯电子产品的狄拉克费米元面,光学元面的电子对应物。通过元表面,正式的栅极偏置圆形量子点线性阵列,电子束的波前可以在单量子点直径距离内形成,远低于室温下的弹道限。这提供了创建在环境条件下运行的基于电子的设备的机会。此外,与光学元信息不同,Dirac Fermion Metasurfaces具有接近完美的操作效率,其高可调性允许在功能之间进行自由和快速的切换。 Metasurface电子光学的概念可能为改善Dirac Fermion材料中量子设备的性能开辟了有希望的途径。
For electron optics in graphene, the propagation effect has so far been the only physical mechanism available. The resulting electron-optics-based components are large in size and operate at low temperatures to avoid violating the ballistic transport limits. In this paper, Dirac fermion metasurfaces, electronic counterparts of optical metasurfaces, are introduced for graphene electronics. By a metasurface, formally a linear array of gate-bias-controlled circular quantum dots, the wavefront of electron beams can be shaped within a one-quantum-dot-diameter distance, far below the ballistic limits at room temperature. This provides opportunities to create electron-optics-based devices that operate under ambient conditions. Moreover, unlike optical metasurfaces, Dirac fermion metasurfaces have near-perfect operating efficiencies and their high tunability allows for free and fast switching among functionalities. The concept of metasurface electron optics might open up a promising avenue for improving the performance of quantum devices in Dirac fermion materials.