论文标题
CitySurfaces:人行道材料的城市规模语义分割
CitySurfaces: City-Scale Semantic Segmentation of Sidewalk Materials
论文作者
论文摘要
尽管设计可持续且有弹性的城市建筑环境在世界范围内越来越多地推广,但大量的数据差距使人们对迫切需要挑战的可持续性问题进行了研究。已知人行道具有强烈的经济和环境影响;但是,由于数据收集的成本较高且耗时的性质,大多数城市缺乏表面的空间目录。计算机视觉的最新进展以及街道级图像的可用性为城市提供了新的机会,可以提取具有较低实施成本和更高准确性的大规模建筑环境数据。在本文中,我们提出了CitySurfaces,这是一个基于积极的学习的框架,利用计算机视觉技术使用广泛可用的街道级图像对人行道材料进行分类。我们在纽约市和波士顿的图像上培训了框架,评估结果显示90.5%的得分。此外,我们使用来自六个不同城市的图像来评估框架,表明它可以应用于具有不同城市织物的区域,即使在培训数据的领域之外也是如此。 CitySurfaces可以为研究人员和城市机构提供低成本,准确且可扩展的方法,以收集人行道材料数据,该数据在解决重大可持续性问题(包括气候变化和地表水管理)中起着至关重要的作用。
While designing sustainable and resilient urban built environment is increasingly promoted around the world, significant data gaps have made research on pressing sustainability issues challenging to carry out. Pavements are known to have strong economic and environmental impacts; however, most cities lack a spatial catalog of their surfaces due to the cost-prohibitive and time-consuming nature of data collection. Recent advancements in computer vision, together with the availability of street-level images, provide new opportunities for cities to extract large-scale built environment data with lower implementation costs and higher accuracy. In this paper, we propose CitySurfaces, an active learning-based framework that leverages computer vision techniques for classifying sidewalk materials using widely available street-level images. We trained the framework on images from New York City and Boston and the evaluation results show a 90.5% mIoU score. Furthermore, we evaluated the framework using images from six different cities, demonstrating that it can be applied to regions with distinct urban fabrics, even outside the domain of the training data. CitySurfaces can provide researchers and city agencies with a low-cost, accurate, and extensible method to collect sidewalk material data which plays a critical role in addressing major sustainability issues, including climate change and surface water management.