论文标题

用于车辆导航的运动动力学计划的高质量控制的数据有效学习

Data-Efficient Learning of High-Quality Controls for Kinodynamic Planning used in Vehicular Navigation

论文作者

Karten, Seth, Sivaramakrishnan, Aravind, Granados, Edgar, McMahon, Troy, Bekris, Kostas E.

论文摘要

本文旨在提高用于车辆系统的运动动力学计划者的路径质量和计算效率。它提出了一个学习框架,用于在基于采样的动态系统的基于采样的运动计划者的扩展过程中识别有希望的控件。离线,学习过程经过培训,以返回在没有输入差异向量的障碍物当前状态和当地目标状态之间的障碍物的情况下,达到当地目标状态(即航路点)的最高质量控制。数据生成方案提供了目标色散的界限,并使用状态空间修剪来确保高质量的控制。通过专注于系统的动态,此过程是数据效率的,并且用于动态系统一次,因此可以用于具有模块化扩展功能的不同环境。这项工作将提出的学习过程与a)a)探索性扩展功能集成在一起,该探索性扩展函数在可触及空间上生成具有偏见的覆盖率的路点,b)为移动机器人提出了剥削性扩展功能,该函数使用内侧轴信息生成航路点。本文评估了一阶差速器系统的学习过程和相应的计划者。结果表明,与动力动力学计划相比,在更少的迭代和计算时间内,学习和计划的整合可以产生更好的质量路径。

This paper aims to improve the path quality and computational efficiency of kinodynamic planners used for vehicular systems. It proposes a learning framework for identifying promising controls during the expansion process of sampling-based motion planners for systems with dynamics. Offline, the learning process is trained to return the highest-quality control that reaches a local goal state (i.e., a waypoint) in the absence of obstacles from an input difference vector between its current state and a local goal state. The data generation scheme provides bounds on the target dispersion and uses state space pruning to ensure high-quality controls. By focusing on the system's dynamics, this process is data efficient and takes place once for a dynamical system, so that it can be used for different environments with modular expansion functions. This work integrates the proposed learning process with a) an exploratory expansion function that generates waypoints with biased coverage over the reachable space, and b) proposes an exploitative expansion function for mobile robots, which generates waypoints using medial axis information. This paper evaluates the learning process and the corresponding planners for a first and second-order differential drive systems. The results show that the proposed integration of learning and planning can produce better quality paths than kinodynamic planning with random controls in fewer iterations and computation time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源