论文标题
Grokking:在小算法数据集上超越过度拟合的概括
Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
论文作者
论文摘要
在本文中,我们建议研究对小算法生成的数据集的神经网络的概括。在这种情况下,可以详细研究有关数据效率,记忆,概括和学习速度的问题。在某些情况下,我们表明神经网络通过“ grokkking”数据模式学习,将概括性能从随机的机会级别提高到完美的概括,并且这种概括的改进可能会超过过度拟合的点。我们还研究概括是数据集大小的函数,发现较小的数据集需要越来越多的优化来进行概括。我们认为,这些数据集为研究深度学习的一个知识方面提供了肥沃的基础:超出有限培训数据集的记忆之外的过度透明神经网络的概括。
In this paper we propose to study generalization of neural networks on small algorithmically generated datasets. In this setting, questions about data efficiency, memorization, generalization, and speed of learning can be studied in great detail. In some situations we show that neural networks learn through a process of "grokking" a pattern in the data, improving generalization performance from random chance level to perfect generalization, and that this improvement in generalization can happen well past the point of overfitting. We also study generalization as a function of dataset size and find that smaller datasets require increasing amounts of optimization for generalization. We argue that these datasets provide a fertile ground for studying a poorly understood aspect of deep learning: generalization of overparametrized neural networks beyond memorization of the finite training dataset.