论文标题

CICY 3倍的分裂拓扑及其在现象学上的应用

Divisor topologies of CICY 3-folds and their applications to phenomenology

论文作者

Carta, Federico, Mininno, Alessandro, Shukla, Pramod

论文摘要

在本文中,我们介绍了一个针对复杂射击空间产物中的超丘的投影完整交叉点Calabi-yau(PCICY)的分类分类。有7890个PCICY,其中7820个是有利的,随后可以用于现象学目的。令我们惊讶的是,我们发现整个PCICY数据库仅导致11个(所谓的坐标)除数$(d)$(d)$不同的拓扑结构,我们将这些表面与PCICY 3倍内的可能变形进行了分类,结果证明这是满足$ 1 \ leq H^{2,0,0}(d)(d)\ leq 7 $。我们还为所有有利的PCICY提供了所谓的足够除数的分类,这对于通过超电势中的单个非扰动术语来固定所有(Saxionic)KählerOduli很有用。我们认为,配备了必要模型构建成分的相对未开发的PCICY数据集,可用于系统地搜索物理真空吸尘器。为了在IIB型Cy Erientifold压缩的背景下为模型构建说明这一点,我们通过对简单模型中的搜索真空搜索进行了一些初步分析,作为一个模板,作为用于分析较大KählerModuli的模型的模板。

In this article, we present a classification for the divisor topologies of the projective complete intersection Calabi-Yau (pCICY) 3-folds realized as hypersurfaces in the product of complex projective spaces. There are 7890 such pCICYs of which 7820 are favorable, and can be subsequently useful for phenomenological purposes. To our surprise we find that the whole pCICY database results in only 11 (so-called coordinate) divisors $(D)$ of distinct topology and we classify those surfaces with their possible deformations inside the pCICY 3-fold, which turn out to be satisfying $1 \leq h^{2,0}(D) \leq 7$. We also present a classification of the so-called ample divisors for all the favorable pCICYs which can be useful for fixing all the (saxionic) Kähler moduli through a single non-perturbative term in the superpotential. We argue that this relatively unexplored pCICY dataset equipped with the necessary model building ingredients, can be used for a systematic search of physical vacua. To illustrate this for model building in the context of type IIB CY orientifold compactifications, we present moduli stabilization with some preliminary analysis of searching possible vacua in simple models, as a template to be adopted for analyzing models with a larger number of Kähler moduli.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源