论文标题

Hyperionsolarnet:太阳能电池板从空中图像检测

HyperionSolarNet: Solar Panel Detection from Aerial Images

论文作者

Parhar, Poonam, Sawasaki, Ryan, Todeschini, Alberto, Reed, Colorado, Vahabi, Hossein, Nusaputra, Nathan, Vergara, Felipe

论文摘要

随着全球气候变化影响世界的影响,需要集体努力来减少温室气体的排放。能源部门是导致气候变化的最大贡献者,许多努力集中在减少对碳发电厂的依赖,并转向可再生能源(例如太阳能)。太阳能电池板位置的全面数据库对于协助分析师和决策者定义了进一步扩展太阳能的策略很重要。在本文中,我们专注于创建世界太阳能电池板的地图。我们确定给定地理区域内太阳能电池板的位置和总表面积。我们使用深度学习方法使用空中图像自动检测太阳能电池板位置及其表面积。该框架由使用图像分类器与语义分割模型协同组成的两个分支模型组成,在我们创建的卫星图像数据集中训练。我们的工作提供了一种用于检测太阳能电池板的有效且可扩展的方法,分类的精度为0.96,而分割性能的IOU得分为0.82。

With the effects of global climate change impacting the world, collective efforts are needed to reduce greenhouse gas emissions. The energy sector is the single largest contributor to climate change and many efforts are focused on reducing dependence on carbon-emitting power plants and moving to renewable energy sources, such as solar power. A comprehensive database of the location of solar panels is important to assist analysts and policymakers in defining strategies for further expansion of solar energy. In this paper we focus on creating a world map of solar panels. We identify locations and total surface area of solar panels within a given geographic area. We use deep learning methods for automated detection of solar panel locations and their surface area using aerial imagery. The framework, which consists of a two-branch model using an image classifier in tandem with a semantic segmentation model, is trained on our created dataset of satellite images. Our work provides an efficient and scalable method for detecting solar panels, achieving an accuracy of 0.96 for classification and an IoU score of 0.82 for segmentation performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源