论文标题

在时间上稀疏的数据同化,用于小规模的湍流重建

Temporally sparse data assimilation for the small-scale reconstruction of turbulence

论文作者

Wang, Yunpeng, Yuan, Zelong, Xie, Chenyue, Wang, Jianchun

论文摘要

先前的作品表明,只要足够的大规模结构通过时间连续的数据同化(TCDA)连续执行(TCDA),只要足够的大尺度结构(TCDA)连续执行,那么不可压缩的均质性湍流(HIT)的小规模信息就可以完全回收。在目前的工作中,我们表明,使用时间稀疏的数据同化(TSDA)策略,可以将同化时间步骤放松到大约1 $ \ sim $ 2订单的值,而在不可挑剔的大型大型错误错误的情况下仍然保持了准确性甚至更好。检查一步数据同化(ODA)以揭示TSDA的机制。结果表明,在同化波数$ k_a $上方错误的放松效果是造成ODA错误衰减的原因。同时,大尺度中包含的错误可能会传播到小尺度上,并使TCDA使用TCDA慢噪声衰减($ k> k_a $)的错误($ k> k_a $)。通过将不同水平的误差纳入参考流场的大尺度中,进一步证实了这种机制。发现TSDA的优势随着掺入误差的幅度而增长。因此,如果参考数据包含不可忽略的错误,则采用TSDA可能会更有益。最后,还讨论了先前的著作中提出的一个杰出问题,该问题还讨论了Kolmogorov量表分辨率上使用直接数值仿真(DNS)数据恢复亚基莫戈罗夫量表的动力学的可能性。

Previous works have shown that the small-scale information of incompressible homogeneous isotropic turbulence (HIT) is fully recoverable as long as sufficient large-scale structures are continuously enforced through temporally continuous data assimilation (TCDA). In the current work, we show that the assimilation time step can be relaxed to values about 1 $\sim$ 2 orders larger than that for TCDA, using a temporally sparse data assimilation (TSDA) strategy, while the accuracy is still maintained or even slightly better in the presence of non-negligible large-scale errors. The one-step data assimilation (ODA) is examined to unravel the mechanism of TSDA. It is shown that the relaxation effect for errors above the assimilation wavenumber $k_a$ is responsible for the error decay in ODA. Meanwhile, The errors contained in the large scales can propagate into small scales and make the high-wavenumber ($k>k_a$) error noise decay slower with TCDA than TSDA. This mechanism is further confirmed by incorporating different levels of errors in the large scales of the reference flow field. The advantage of TSDA is found to grow with the magnitude of the incorporated errors. Thus, it is potentially more beneficial to adopt TSDA if the reference data contains non-negligible errors. Finally, an outstanding issue raised in previous works regarding the possibility of recovering the dynamics of sub-Kolmogorov scales using direct numerical simulation (DNS) data at Kolmogorov scale resolution is also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源