论文标题

基于机器学习的相图预测的分类方法

A machine learning-based classification approach for phase diagram prediction

论文作者

Deffrennes, Guillaume, Terayama, Kei, Abe, Taichi, Tamura, Ryo

论文摘要

相图的知识对于材料设计至关重要,因为它有助于理解处理过程中的微观结构演变。因此,确定相图是材料科学中的核心任务之一。当探索相图未知的新材料时,实验者通常会尝试通过引用相似系统的已知相图来确定应该执行的关键实验。为了增强这种实用策略,我们尝试使用基于机器学习的分类方法根据已知相图来估算未知相图。作为概念的证明,我们专注于预测其他9个部分的Al-Cu-Mg-Si-Z-Z-ZN系统中每个10个三元的800 K等热部分的共存阶段数量。为了提高预测准确性,我们介绍了从元素的热力学特性和低阶系统中的calphad外推产生的新描述符。使用随机森林方法,预测所有10个被认为的部分的平均精度为84%,标准偏差为11%,平均准确度为84%。所提出的方法代表了一种有前途的工具,用于协助研究人员有效地开发新材料并确定相位平衡。

Knowledge of phase diagrams is essential for material design as it helps in understanding microstructure evolution during processing. The determination of phase diagrams is thus one of the central tasks in materials science. When exploring new materials for which the phase diagram is unknown, experimentalists often try to determine the key experiments that should be performed by referencing known phase diagrams of similar systems. To enhance this practical strategy, we attempted to estimate unknown phase diagrams based on known phase diagrams using a machine learning-based classification approach. As a proof of concept, we focused on predicting the number of coexisting phases across the 800 K isothermal section of each of the 10 ternaries of the Al-Cu-Mg-Si-Zn system from the other 9 sections. To increase the prediction accuracy, we introduced new descriptors generated from the thermodynamic properties of the elements and CALPHAD extrapolations from lower-order systems. Using the random forest method, the presence of single-, two-, and three-phase domains was predicted with an average accuracy of 84% across all 10 considered sections with a standard deviation of 11%. The proposed approach represents a promising tool for assisting the investigator in developing new materials and determining phase equilibria efficiently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源