论文标题

修剪深度神经网络可为昆虫飞行产生稀疏,生物启发的非线性控制器

Pruning deep neural networks generates a sparse, bio-inspired nonlinear controller for insect flight

论文作者

Zahn, Olivia, Bustamante Jr., Jorge, Switzer, Callin, Daniel, Thomas, Kutz, J. Nathan

论文摘要

昆虫飞行是一种强烈的非线性和动态动力学系统。因此,理解其控制的策略通常依赖于基于模型的方法或线性化的策略。在这里,我们开发了一个框架,该框架结合了对已建立的飞行动力学模型和深神经网络(DNN)的模型预测控制,以创建一种有效的方法来解决飞行控制的逆问题。我们求助于自然系统以寻求灵感,因为它们固有地展示了网络修剪,其结果是为一组特定的任务产生更有效的网络。这种受生物启发的方法使我们能够利用网络修剪来最佳地稀疏DNN体系结构,以执行尽可能少的神经连接的飞行任务,但是,稀疏有限。具体而言,随着连接数量低于关键阈值,飞行性能大大下降。我们开发稀疏范式,并探索其控制任务的限制。蒙特卡洛模拟还量化了鉴于DNN的初始随机权重,在修剪过程中,网络重量的统计分布。我们证明,平均而言,可以修剪该网络以保留约7%的原始网络权重,并且在网络的每一层中都量化了统计分布。总体而言,这项工作表明,稀疏连接的DNN能够预测遵循飞行轨迹所需的力。此外,稀疏具有急剧的性能限制。

Insect flight is a strongly nonlinear and actuated dynamical system. As such, strategies for understanding its control have typically relied on either model-based methods or linearizations thereof. Here we develop a framework that combines model predictive control on an established flight dynamics model and deep neural networks (DNN) to create an efficient method for solving the inverse problem of flight control. We turn to natural systems for inspiration since they inherently demonstrate network pruning with the consequence of yielding more efficient networks for a specific set of tasks. This bio-inspired approach allows us to leverage network pruning to optimally sparsify a DNN architecture in order to perform flight tasks with as few neural connections as possible, however, there are limits to sparsification. Specifically, as the number of connections falls below a critical threshold, flight performance drops considerably. We develop sparsification paradigms and explore their limits for control tasks. Monte Carlo simulations also quantify the statistical distribution of network weights during pruning given initial random weights of the DNNs. We demonstrate that on average, the network can be pruned to retain approximately 7% of the original network weights, with statistical distributions quantified at each layer of the network. Overall, this work shows that sparsely connected DNNs are capable of predicting the forces required to follow flight trajectories. Additionally, sparsification has sharp performance limits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源