论文标题

泊松点过程的均质系数的Gevrey规律性的简短证明

A short proof of Gevrey regularity for homogenized coefficients of the Poisson point process

论文作者

Duerinckx, Mitia, Gloria, Antoine

论文摘要

在此简短的说明中,我们通过解决Poisson点过程的情况下,利用并完成了以前的结果,以实现Bernoulli扰动的均质系数的规律性,为此,局部局部有限的假设失败了。特别是,我们加强了第一作者在此环境中首先获得的定性规律性结果,以使命令的规律性〜2。新成分是泊松点过程的独立性,该过程以Giunti,Gu,Mourrat和Nitzschner最近使用的形式。

In this short note we capitalize on and complete our previous results on the regularity of the homogenized coefficients for Bernoulli perturbations by addressing the case of the Poisson point process, for which the crucial uniform local finiteness assumption fails. In particular, we strengthen the qualitative regularity result first obtained in this setting by the first author to Gevrey regularity of order~2. The new ingredient is the independence of Poisson point processes, in a form recently used by Giunti, Gu, Mourrat, and Nitzschner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源