论文标题

三维NLTE反问题的新框架

Novel framework for the three-dimensional NLTE inverse problem

论文作者

Stepan, Jiri, Aleman, Tanausu del Pino, Bueno, Javier Trujillo

论文摘要

太阳能上层大气的光谱极化观察的反转是太阳能物理学中最具挑战性的目标之一。如果我们说明光谱线形成过程的所有相关成分,例如从局部热力学平衡(NLTE)中的三维(3D)辐射转移,则该任务在计算上变得非常昂贵。我们没有将1D方法概括为3D,而是为反问题开发了一种新方法。在我们的网格方法中,我们不认为3D \ nlte一致性的要求是障碍,而是相对于传统像素逐像素方法的自然正规化。这导致了更健壮和含糊不清的解决方案。我们将3D \,NLTE逆问题作为无约束的全局最小化问题,避免了对$λ$运算符的重复评估。除了3D \ NLTE的一致性外,该方法还使我们可以轻松地包括物理一致性的其他条件,例如磁场的零差异。随机成分使该方法不容易在损失函数的局部最小值中最终出现。与使用基于网格的方法相比,我们的方法能够更快地解决逆问题的速度。如果有足够的计算时间可用,则该方法可以提供准确且物理上一致的结果,以及在非常复杂的等离子体结构或有限的计算时间的情况下,可以提供近似解决方案。

The inversion of spectropolarimetric observations of the solar upper atmosphere is one of the most challenging goals in solar physics. If we account for all relevant ingredients of the spectral line formation process, such as the three-dimensional (3D) radiative transfer out of local thermodynamic equilibrium (NLTE), the task becomes extremely computationally expensive. Instead of generalizing 1D methods to 3D, we have developed a new approach to the inverse problem. In our meshfree method, we do not consider the requirement of 3D\,NLTE consistency as an obstacle, but as a natural regularization with respect to the traditional pixel-by-pixel methods. This leads to more robust and less ambiguous solutions. We solve the 3D\,NLTE inverse problem as an unconstrained global minimization problem that avoids repetitive evaluations of the $Λ$ operator. Apart from the 3D\,NLTE consistency, the method allows us to easily include additional conditions of physical consistency such as the zero divergence of the magnetic field. Stochastic ingredients make the method less prone to ending up within the local minima of the loss function. Our method is capable of solving the inverse problem faster by several orders of magnitude than by using grid-based methods. The method can provide accurate and physically consistent results if sufficient computing time is available, along with approximate solutions in the case of very complex plasma structures or limited computing time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源