论文标题
通过判别性和可比的单级分类器,无示例性的类增量学习
Exemplar-free Class Incremental Learning via Discriminative and Comparable One-class Classifiers
论文作者
论文摘要
无示例性的类增量学习需要分类模型来逐步学习新的类知识,而无需保留任何旧样本。最近,基于平行的单级分类器(POC)的框架,该框架独立于每个类别训练单级分类器(OCC),引起了广泛的关注,因为它自然可以避免灾难性的遗忘。但是,由于其不同OOC的独立训练策略,POC遭受了较弱的可区分性和可比性。为了应对这一挑战,我们提出了一个新的框架,称为增量学习(Discoil)的歧视性和可比的一级分类器。 Discoil遵循POC的基本原理,但是它采用了变异自动编码器(VAE),而不是其他良好的单级分类器(例如,Deep SVDD),因为训练有素的VAE不仅可以识别属于类的输入样本的可能性,而且还可以识别出类似于课程的pseudo样本以帮助学习新任务。有了这个优势,迪斯林与老级VAE相比训练了新级的VAE,这迫使新级VAE更好地重建新级样本,但对于老阶级伪样品而言,更差,从而增强了可比性。此外,Discoil引入了铰链重建损失,以确保可区分性。我们对MNIST,CIFAR10和TININ-IMAGENET进行了广泛的评估。实验结果表明,迪斯林实现了最先进的性能。
The exemplar-free class incremental learning requires classification models to learn new class knowledge incrementally without retaining any old samples. Recently, the framework based on parallel one-class classifiers (POC), which trains a one-class classifier (OCC) independently for each category, has attracted extensive attention, since it can naturally avoid catastrophic forgetting. POC, however, suffers from weak discriminability and comparability due to its independent training strategy for different OOCs. To meet this challenge, we propose a new framework, named Discriminative and Comparable One-class classifiers for Incremental Learning (DisCOIL). DisCOIL follows the basic principle of POC, but it adopts variational auto-encoders (VAE) instead of other well-established one-class classifiers (e.g. deep SVDD), because a trained VAE can not only identify the probability of an input sample belonging to a class but also generate pseudo samples of the class to assist in learning new tasks. With this advantage, DisCOIL trains a new-class VAE in contrast with the old-class VAEs, which forces the new-class VAE to reconstruct better for new-class samples but worse for the old-class pseudo samples, thus enhancing the comparability. Furthermore, DisCOIL introduces a hinge reconstruction loss to ensure the discriminability. We evaluate our method extensively on MNIST, CIFAR10, and Tiny-ImageNet. The experimental results show that DisCOIL achieves state-of-the-art performance.