论文标题

平面分区功能的Turán不平等

Turán inequalities for the plane partition function

论文作者

Ono, Ken, Pujahari, Sudhir, Rolen, Larry

论文摘要

Heim,Neuhauser和Tröger最近为Macmahon的平面分区功能$ \ MATHRM {PL}(n)$建立了一些不平等现象,这些功能将已知结果概括为Euler的分区功能$ P(n)$。他们还推测$ \ mathrm {pl}(n)$是所有$ n \ geq 12的log-concave。$我们证明了这个猜想。此外,对于每$ d \ geq 1 $,我们都会证明他们的猜测$ \ mathrm {pl}(n)$满足了足够大的$ n $的学位$ d $turán的不平等。 $ d = 2 $的情况是log-concavity的情况。

Heim, Neuhauser, and Tröger recently established some inequalities for MacMahon's plane partition function $\mathrm{PL}(n)$ that generalize known results for Euler's partition function $p(n)$. They also conjectured that $\mathrm{PL}(n)$ is log-concave for all $n\geq 12.$ We prove this conjecture. Moreover, for every $d\geq 1$, we prove their speculation that $\mathrm{PL}(n)$ satisfies the degree $d$ Turán inequality for sufficiently large $n$. The case where $d=2$ is the case of log-concavity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源